1

1 Integrated respiratory chemoreflex-mediated regulation of cerebral blood flow in

- 2 hypoxia: implications for oxygen delivery and acute mountain sickness
- 3 Shigehiko Ogoh^{1,2}, Takuro Washio^{*1,3}, Benjamin S. Stacey^{*2}, Hayato Tsukamoto^{2,4},
- 4 Angelo Iannetelli², Thomas S. Owens², Thomas A. Calverley², Lewis Fall², Shotaro
- 5 Saito¹, Hironori Watanabe¹, Takeshi Hashimoto⁴, Soichi Ando⁵, Tadayoshi Miyamoto⁶
- 6 and Damian M. Bailey^{2,3}
- 7 ¹Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan
- 8 ²Neurovascular Research Laboratory, Faculty of Life Sciences and Education,
- 9 University of South Wales, Pontypridd, UK
- 10 ³Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- 11 ⁴Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
- 12 ⁵Graduate School of Informatics and Engineering, The University of Electro-
- 13 Communications, Tokyo, Japan
- 14 ⁶Osaka Sangyo University, Osaka, Japan
- 15 *contributed equally
- 16
- 17 Running title; CBF during normobaric hypoxia
- 18
- 19 Corresponding Author:
- 20 Professor Damian Miles Bailey PhD FPVRI FRSC FACSM FTPS,
- 21 Royal Society Wolfson Research Fellow,
- 22 Director of the Neurovascular Research Laboratory,
- 23 Faculty of Life Sciences and Education,
- 24 University of South Wales,
- 25 UK CF37 4AT.
- 26
- 27 Tel: +44-1443-482296
- 28 Fax: +44-1443-482285
- 29 email: damian.bailey@southwales.ac.uk

30 ABSTRACT

31The aim of the present study was to determine to what extent hypoxia induced changes 32in the peripheral and central respiratory chemoreflex modulate anterior and posterior 33 cerebral blood flow (CBF), oxygen delivery (CDO₂) and corresponding implications for 34the pathophysiology of the neurological syndrome, acute mountain sickness (AMS). 35Eight healthy males were randomly assigned single-blind to 7 h passive exposure to 36 both normoxia (21% O₂) and hypoxia (12% O₂). The peripheral and central respiratory 37 chemoreflex, internal carotid (ICA), external carotid (ECA), and vertebral (VA) artery blood flow (duplex ultrasound) and AMS scores (questionnaires) were measured 3839throughout. A reduction in ICA CDO₂ was observed during hypoxia despite a 40 compensatory elevation in perfusion. In contrast, VA and ECA CDO₂ were preserved that in the former was due to a more marked increase in perfusion. Hypoxia was 4142associated with progressive activation of the peripheral respiratory chemoreflex (P43<0.001) whereas the central respiratory chemoreflex remained unchanged (P>0.05). Symptom severity in participants who developed clinical AMS was positively related to 44ECA blood flow (LLS, r = 0.546~0.709, P = 0.004~0.043; ESQ-C, r = 0.587~0.771, P = 45460.001~0.027, n=4). Collectively, these findings highlight the site-specific regulation of 47CBF in hypoxia that selectively maintains CDO₂ in the posterior but not anterior 48cerebral circulation, with minimal contribution from the central respiratory 49chemoreflex. Furthermore, ECA vasodilation may represent a hitherto unexplored 50hemodynamic risk factor implicated in the pathophysiology of AMS.

51

52 New Findings

53 What is the central question of this study?

54 To what extent does hypoxia-induced changes in the peripheral and central respiratory

- 55 chemoreflex modulate anterior and posterior cerebral oxygen delivery and
- 56 corresponding implications for acute mountain sickness susceptibility?

57 What is the main finding and its importance?

- 58 Evidence for site-specific regulation of cerebral blood flow in hypoxia that preserves
- 59 oxygen delivery in the posterior but not anterior cerebral circulation, with minimal
- 60 contribution from the central respiratory chemoreflex. External carotid artery

- 62 acute mountain sickness.
- 63
- 64 Key Words: Hypoxia; cerebral blood flow; oxygen delivery; respiratory chemoreflex,
- 65 acute mountain sickness

66 Introduction

67 The human brain has evolved exquisite sensitivity to oxygen (O₂)/glucose supply and 68 carbon dioxide (CO₂) clearance given its disproportionately high mass-specific energy 69 demands, limited energy stores and almost exclusive reliance on aerobic metabolism 70 (Bailey, 2019b, a). To protect against potential damage caused by hypoxia, the brain is 71equipped with specialized defence mechanisms including the carotid (peripheral) and 72medullary (central) respiratory chemoreflexes, capable of 'sensing' subtle changes in 73blood O₂/CO₂/H⁺ concentrations and relaying signals that ultimately preserve 74bioenergetic homeostasis (Costa et al., 2014; Dempsey et al., 2014). 75While hypoxia is a potent cerebral vasodilator reflected by an elevation in CBF 76in direct proportion to the severity of isocapnic hypoxemia, activation of the peripheral 77respiratory chemoreflex in poikilocapnia leads to hyperventilation-induced hypocapnia 78and subsequent cerebral vasoconstriction, antagonizing CDO₂ (Ainslie *et al.*, 2016; 79Hoiland *et al.*, 2016). Furthermore, hypoxic regulation of CBF and CDO₂ is 80 heterogenous with emergent, albeit controversial evidence for preferential 81 vasodilatation in the posterior (brainstem) as opposed to the anterior (cortical) 82circulation reflected by increased flow through the vertebral (VA) relative to the internal carotid (ICA) arteries (Willie et al., 2012; Ogoh et al., 2013b). Furthermore, 83 84 there is evidence to suggest that the posterior circulation exhibits comparatively lower 85 sympathetic innervation (Edvinsson et al., 1976), dynamic cerebral autoregulation 86 (Sato et al., 2012a), and CO₂ vasoreactivity (Sato et al., 2012b) and is thus better 87 equipped to conserve substrate delivery to phylogenetically older more important areas 88 of the brain implicated in cardiorespiratory control. 89 Exposing adult humans to hypoxia alters pulmonary ventilation (Mahamed & 90 Duffin, 2001), due in part to changes in the central chemoreflex (Sato et al., 1992), 91peripheral chemoreflex (Robbins, 1995; Garcia et al., 2001), and peripheral 92chemoreceptor-mediated depression of central respiratory drive (Dahan *et al.*, 1994; Kimura et al., 1998). Indeed, (Mahamed & Duffin, 2001) demonstrated that repeated 9394hypoxia exposure (20 min hypoxia once daily for 14 consecutive days) decreases the 95chemoreflex threshold and consequently enhances the ventilatory response to hypoxia. 96 The central and peripheral respiratory chemoreflex that directly and indirectly affect

4

97 CBF regulation (Ogoh et al., 2008; Ogoh et al., 2009; Ogoh et al., 2013a) may be 98modified during continuous hypoxia exposure, yet no studies to our knowledge that 99 have defined the temporal kinetics and functional interaction between hypoxia-induced 100activation of the (peripheral/central) respiratory chemoreflex and corresponding 101 implications for the differential modulation of CBF and CDO₂ across distinct vascular 102beds. Furthermore, while classically viewed as an evolutionary conserved adaptive 103trait, cerebral hypoxic vasodilatation may equally enhance vulnerability to AMS, a 104debilitating neurological syndrome characterized by headache and related vegetative sequelae (Bailey et al., 2009a). Although the pathogenic significance of intracranial 105106 hypertension (IH) remains disputed, direct activation of the trigeminovascular system 107 (TVS) subsequent to displacement of pain-sensitive unmyelinated fibres caused by IH 108is considered the primary stimulus underlying cephalalgia (Sanchez del Rio & 109 Moskowitz, 1999). The TVS connects to intracranial and extracranial circulation 110 (Lance, 1993), while it has been reported that intracranial CBF regulation did not 111 affect AMS (Subudhi et al., 2010). Yet to what extent extracranial vasodilatation that 112we have also linked to flow redistribution (vascular steal) from the ICA (Hirasawa et 113al., 2016) and subsequent mechanical distention of terminal branches of the external 114carotid artery (ECA) that ultimately converge on the TVS potentially influence 115susceptibility to AMS remains to be investigated.

116To address these knowledge gaps, we conducted a randomised, cross-over, 117single-blind study incorporating serial measurements in normoxia and hypoxia to test 118three functionally integrated hypotheses. First, that CDO₂ to the posterior circulation 119 (VA) would remain well preserved (i.e. equivalent to normoxia) subsequent to a 120sustained elevation in CBF, whereas CBF and CDO₂ would become progressively lower in the anterior circulation ($\Delta VA > \Delta ICA$). Second, that differential reactivity would be 121122related to selective activation of the peripheral respiratory chemoreflex and 123corresponding vasoconstrictive constraints imposed by hyperventilation-induced 124hypocapnia to which the anterior circulation is more sensitive combined with vascular 125steal from the ICA to the ECA. Finally, that the severity of AMS would be directly 126related to the hypoxia-induced increase in ECA vasodilatation given its anatomical 127proximity to the TVS.

 $\mathbf{5}$

128 Methods

129 Ethical Approval

The study was approved by the Ethics Committee of the University of South Wales, UK (#201712BS01). All procedures were carried out in accordance with the most (7th) recent amendment of the Declaration of Helsinki of the World Medical Association (with the exception that it was not registered in a publicly accessible database prior to recruitment) with verbal and written informed consent obtained from all participants.

135

136 Participants

137Eight physically active male participants (age: 23 ± 2 y, stature: 1.81 ± 0.04 m, mass: 80 138 \pm 7 kg) participated in this study. All participants lived close to sea level (90 m) and had 139not been exposed to simulated or terrestrial high-altitude in the previous 12 months. 140 Following a medical examination, they were confirmed to be healthy and free of any 141known diseases. Furthermore, they were not taking any prescribed or over-the-counter 142medications or supplements. They were instructed to refrain from physical activity, 143caffeine, and alcohol and to follow a low nitrate/nitrite diet for at least 24 h prior to 144formal experimentation (Bailey et al., 2017a).

145

146 Experimental Procedure

147Following familiarization, participants completed two different experimental trials 148(randomised, cross-over, single-blind design, Fig. 1), in a normobaric environmental 149chamber (~ 120 m³) maintained at 21°C and 50% relative humidity (Design 150Environmental, Ebbw Vale, UK). Participants were randomly assigned to complete 7 h passive exposure to normoxia (FiO₂ = 0.21) and 7 h of hypoxia (FiO₂ = 0.12), separated 151by 7 days. Participants arrived at the laboratory (between 8:00 and 9:00 A.M.) following 152153a 12 h overnight fast and were fitted with an indwelling cephalic venous cannula. They 154consumed a standardized meal (30 g of oats with 180 mL water), 30 min prior to the experimental trials. They received the standardized meal again at 2 h, 4 h, and 6 h to 155156maximize compliance and avoid hunger/dehydration (Bailey et al., 2001). Throughout 157both exposures, blood samples, CBF (including the peripheral respiratory chemoreflex), 158cardiopulmonary variables, and AMS scores were assessed on the hour every hour for

the duration of exposure to each respective inspirate. The central respiratorychemoreflex was assessed at the 2, 4, and 6 h time-points.

161

162 Blood sampling

163 Whole blood was obtained at the various timepoints illustrated in Fig. 1 without stasis 164 from an indwelling cannula located in a forearm antecubital vein. Haemoglobin (Hb) was 165 measured photometrically in triplicate (average value taken) according to established 166 procedures (Vanzetti, 1966) (HaemoCue®, B-Haemoglobin, Sheffield, UK).

167

168 Cardiopulmonary function

169 Heart rate (HR) was monitored by ECG (lead II) and SpO₂ was quantified via finger-170pulse oximetry (WristOx2[®] 3150, Nonin, Minnesota, USA). Beat-to-beat arterial blood 171pressure (ABP) was monitored continuously using finger photoplethysmography 172(Finometer PRO, Finapres Medical Systems, Amsterdam, The Netherlands). The 173finometer blood pressure waveform was used to indirectly measure ABP after calibrating 174values to the average of two automated brachial blood pressure measurements (Life 175Source, A&D Medical, model: UA767FAM), taken over a five-minute resting baseline period. Cardiac output (Q) was determined from the ABP waveform using the BeatScope 176177version 1.0 software (TNO-TPD, Biomedical Instrumentation, Amsterdam, The 178Netherlands), which incorporates the sex, age, stature, and mass of the participant. Respiratory rate (RR), tidal volume (VT), minute ventilation (VE) and end-tidal partial 179180 pressures of O_2 and CO_2 (PetO₂/PetCO₂) were measured via a mouthpiece and automatic 181 breath-by-breath respiratory gas-analyzing system that housed a differential pressure 182transducer, sampling tube, filter, suction pump and mass spectrometer (ML 206, 183 ADInstruments, UK). Haemodynamics and respiratory measurements were recorded 184continuously at 1 kHz using an analog-to-digital converter (PowerLab; ADInstruments) 185and stored on a laboratory computer for offline analysis. These variables were averaged 186during the final 30 s of each hour.

187

188 *Respiratory chemoreflex*

189Central chemoreflex: The sensitivity of the central respiratory chemoreflex was 190determined using an open-circuit apparatus at the 2, 4, and 6 h time-points. Participants 191breathed through a mouthpiece attached to a low-resistance one-way valve with a built-192in hot-wire flow metre. The valve mechanism allowed participants to inspire room air or 193medical-grade gas mixture from a 200 L Douglas bag containing 5% CO₂ in 21% O₂ (normoxia) or 12% O_2 (hypoxia) with balanced nitrogen (N₂) (Ellingsen *et al.*, 1987a; 194195Ellingsen et al., 1987b). Increased PETCO₂ (input) stimulates chemoreceptor activity thereby increasing pulmonary ventilation (V_{E} , output) via the central respiratory 196 197 chemoreflex. The response of V_E to a change in (inspired) CO₂ is close to constant within 198the range of 0–5% CO₂ in the inspired gas (Ogoh *et al.*, 2008). To reduce participant stress, 199we employed two CO_2 inspirates (0.03% and 5% CO_2) to quantify the relative change in VE in response to $P_{ET}CO_2$ (ΔV_E / $\Delta P_{ET}CO_2$) as an index of central respiratory chemoreflex 200201sensitivity.

202

203 **Peripheral chemoreflex:** We calculated the V_E response relative to changes in $P_{ET}O_2$ (Δ 204 $V_E/\Delta P_{ET}O_2$) between the normoxic and hypoxic inspirates every hour given the constancy 205 of each respective inspirate (i.e. we could not dynamically manipulate F₁O₂) given the 206 potential confounds for all remaining variables of interest.

207

208 Cerebrovascular function

209Volumetric blood flow in the ICA, ECA, and VA were determined by two separate 210investigators concurrently using duplex ultrasound (Vivid-i; GE Healthcare, Tokyo, 211Japan) equipped with a 10–13 MHz linear transducer. We and others have demonstrated 212that this approach is technically feasible and free of, any potential confounds caused by 213probe positioning or competitive ultrasound beam interference (Sato et al., 2011; Ogoh 214et al., 2014a; Hirasawa et al., 2016; Ogoh et al., 2017; Caldwell et al., 2020). ICA and 215ECA measurements were taken 1.0-1.5 cm distal to the carotid bifurcation on the right 216side of the neck with the subject's chin slightly elevated. Left VA blood flow was measured 217between the transverse process of the C3 vertebra and subclavian artery. Specifically, 218the systolic and diastolic diameters were measured and used to calculate mean diameter 219in cm [(systolic diameter \times 1/3) + (diastolic diameter \times 2/3)]. The time-averaged mean blood velocity (cm/s) was obtained using pulsed wave mode, averaged over 10–20 cardiac cycles to minimize potential effects caused by respiration (Sato *et al.*, 2011). When measuring blood velocity, care was taken to ensure that the probe position was stable, that the insonation angle was maintained throughout at 60 deg, the sample volume gate

- was positioned in the center of the vessel and adjusted to cover the width of the vessel.
- 225

226 Calculations

Total vascular conductance (TVC) was calculated by dividing Q by mean arterial 227pressure (MAP). Blood flow was calculated by multiplying the cross-sectional area $[\pi \times$ 228229 $(\text{mean diameter}/2)^2$ by mean blood flow; blood flow = mean blood velocity × area × 60 230(mL/min). Global CBF (gCBF) was calculated as: (ICA blood flow + VA blood flow) × 2. 231Cerebral vascular conductance (CVC) at each artery was calculated by dividing CBF at 232each artery by MAP. In addition, we calculated the ICA, VA, and ECA CVC response 233relative to changes in $P_{ET}O_2$ or $P_{ET}CO_2$ between the normoxic and hypoxic inspirates 234every hour. The contributions of Q to ICA, ECA, and VA blood flows were calculated as: (ICA blood flow, ECA blood flow or VA blood flow) $\times 2/Q \times 100$ (%). Local and global CDO₂ 235were determined as CDO₂ (mL/min) = ICA blood flow, ECA blood flow, VA blood flow or 236237gCBF \times (estimated) arterial O₂ content (CaO₂), calculated as (Hb (g/dL) \times 1.39 \times

238 $\frac{\text{SaO}_{2(\%)}}{100}$ excluding (albeit minor) contributions from dissolved O₂ (0.003 x arterial PO₂) 239 since we did not perform arterial catheterization.

240

241 Acute mountain sickness (AMS) scores

The Lake Louise Score (LLS) (Roach *et al.*, 2018) and Environmental Symptoms Questionnaires-cerebral symptoms score (ESQ-C) (Sampson *et al.*, 1983) were used to evaluate AMS symptoms every hour during both exposures. Participants were also asked to rate their cephalalgia using a clinically validated visual analog scale (0 to 100 mm; 0 mm = no headache, 10 mm = mild headache including a sensation of pressing or throbbing, 50 mm = moderate-intensity headache, and 100 mm = worst possible headache) (Iversen *et al.*, 1989). Clinical AMS (moderate-to-severe) was defined if a

- participant presented with a LLS of \geq 5 points in the presence of a headache and ESQ-C \geq 0.7 points at the 6h time-point of exposure to hypoxia (Bailey *et al.*, 2006).
- 251

252 Statistical analysis

253All data were analyzed using SPSS (IBM SPSS Statistics Version 25.0) and expressed as 254mean ± standard deviation (SD). Repeated Shapiro-Wilk W tests were employed to test 255for distribution normality. Data were analyzed using a combination of one and two 256(Condition: normoxia vs. hypoxia × Time: 1h-7h or Artery: ICA, VA vs. ECA × Time: 1h-2577h) repeated measures analyses of variance (ANOVA). For non-normally distributed data, 258the Friedman test (nonparametric equivalent) was performed on ranks, and pairwise 259comparisons were made using Wilcoxon signed-ranks tests. Differences between means 260were located using Bonferroni-corrected paired samples t-tests when an interaction effect(s) was detected. Effect sizes were calculated retrospectively as *eta squared* (n^2) for 261262all ANOVA outcomes according to established procedures (Lakens, 2013). Relationships 263between select dependent variables were determined using Spearman's rank-order 264correlations. Significance was determined at an alpha level of 0.05 for all two-tailed tests.

265 **Results**

266 Cardiopulmonary

MAP was lower whereas \hat{Q} and TVC were elevated in hypoxia compared to normoxia (P 267268= 0.039, η^2 = 0.166; P = 0.006, η^2 = 0.138 and P = 0.004, η^2 = 0.215, respectively) whereas HR did not change (P = 0.051, $\eta^2 = 0.066$, Table 1). As expected, PetO₂ and SpO₂ were 269270lower during hypoxia (both, P < 0.001, $\eta^2 > 0.825$), but the decreased P_{ET}O₂ progressively increased toward the baseline throughout 7 h hypoxia (P = 0.001, $\eta^2 = 0.296$, Fig. 2). A 271272progressive and equivalent elevation in Hb was observed normoxia and hypoxia (between trials P = 0.162, $\eta^2 = 0.020$). PETCO₂ was lower during hypoxia (P = 0.001, $\eta^2 =$ 2730.642), and gradually decreased throughout (P=0.001, $\eta^2=0.167$). V_E was higher during 274hypoxia (P = 0.008, $\eta^2 = 0.232$) and this elevation in V_E was gradually increased 275throughout (P = 0.012, $\eta^2 = 0.121$). Central chemoreflex sensitivity ($\Delta V_E / \Delta P_{ET}CO_2$) did 276not change during hypoxia (P = 0.223, Kendall's W = 0.250, Fig. 3 A), whereas the 277peripheral chemoreflex sensitivity ($\Delta V_E / \Delta P_{ET}O_2$) progressively increased (P = 0.035, η^2 278279= 0.178, Fig3 B). No significant correlations were observed between these hemodynamic 280parameters and CBF CDO₂ (Table 2).

281

282 Cerebrovascular

283ICA blood flow was generally elevated throughout hypoxia reaching its peak by the 2nd h before progressively decreasing over time (P = 0.024, $\eta^2 = 0.182$, Fig. 4 A). This was 284due primarily to a change in blood velocity that increased by the 2nd and 3rd h before 285decreasing thereon in (P = 0.012 vs. normoxia, Table 3), while diameter increased 286throughout hypoxia (P = 0.005, $\eta^2 = 0.075$). However, both elevations in ICA blood flow 287and ICA CVC (P = 0.002, $\eta^2 = 0.243$, Fig. 4B) were not sufficient to offset the hypoxia-288289induced reduction in CaO₂ (Table 1) resulting in lower ICA CDO₂ relative to normoxia (P = 0.009, η^2 = 0.186, Fig 4C). VA blood flow (P = 0.006, η^2 = 0.030) and VA CVC (P = 0.008, 290291 $\eta^2 = 0.084$) were consistently elevated during hypoxia and VA CDO₂ was comparable to that observed in normoxia (P=0.414, $\eta^2=0.001$). In contrast to ICA, VA diameter did not 292change (P=0.195, $\eta^2=0.007$), whereas VA blood velocity tended to increase (P=0.07, η^2 293= 0.092). In contrast, gCBF CDO₂ was lower in hypoxia compared to normoxia (P= 0.019, 294 $\eta^2 = 0.080$) despite an elevation in gCBF (P = 0.002, $\eta^2 = 0.088$) and gCVC (P = 0.002, η^2 295

= 0.209). Hypoxia failed to alter ECA blood flow and ECA CDO₂ (P = 0.212, η^2 = 0.048 296and P = 0.181, $\eta^2 = 0.051$, respectively) but elevated ECA CVC (P = 0.021, $\eta^2 = 0.192$). 297Hypoxia increased ECA diameter (P = 0.001, $n^2 = 0.239$) without affecting blood velocity 298299or flow (P = 0.813, $\eta^2 = 0.002$). ICA, VA and ECA CVC responses to PetO₂ and PetCO₂ remained unchanged throughout (PetO₂; P = 0.906, Kendall's W = 0.045, P = 0.667, 300 301 Kendall's W = 0.085 and P = 0.872, Kendall's W = 0.051, and $P_{ET}CO_2$; P = 0.448, Kendall's 302W= 0.121, P= 0.546, Kendall's W= 0.104 and P= 0.448, Kendall's W= 0.121, Fig.5 A, 303 B). However, there was no difference in CVC to changes in $P_{ET}O_2$ and $P_{ET}O_2$ between 304 arteries (P = 0.246, $\eta^2 = 0.040$ or P = 0.670, $\eta^2 = 0.008$).

The relative elevation in Q and TVC was augmented in hypoxia (P = 0.004, η^2 = 0.191 and P = 0.009, $\eta^2 = 0.235$, Fig.6 A, B) but the contribution of Q to total CBF (sum of ICA, ECA and VA blood flow) decreased (P < 0.001, $\eta^2 = 0.042$, Fig.6 C). The contribution of Q to VA and ECA blood flow did not change in hypoxia ($P \ge 0.331$ and P ≥ 0.180), whereas ICA blood flow decreased consistently throughout ($P \le 0.024$, Fig. 6 C). 310

311 AMS

312 As expected, hypoxia increased AMS scores (Table 4) with four of eight participants

313 (50%) diagnosed with clinical AMS and in whom ECA blood flow was selectively elevated

314 (P = 0.003 vs. non-AMS, $\eta^2 = 0.260$, Fig. 7). In addition, relationships were observed

between ECA blood flow and AMS symptom severity (Table 5).

316 **Discussion**

317The present study has highlighted three important findings. First, ICA CDO_2 was 318 consistently lower in hypoxia despite a compensatory elevation in ICA blood flow, 319whereas VA and ECA CDO₂ remained well preserved. Second, hypoxia was associated 320 with progressive activation of the peripheral respiratory chemoreflex that likely 321attenuated the hypoxia-induced reduction in P_{ET}O₂ whereas the contribution from the 322central respiratory chemoreflex was minimal. Third, hypoxic vasodilatation of the ECA 323 was consistently more pronounced in participants diagnosed with clinical AMS 324suggesting a potential link to underlying pathophysiology. Collectively, these findings 325highlight the integrated cerebrovascular response to the site-specific regulation of CDO₂ 326 and corresponding neurological complications in hypoxia. That substrate delivery was 327better preserved in the posterior compared to the anterior cerebral circulation makes 328 teleological sense given that the territories the vertebral-basilar system feeds, notably 329 the medulla oblongata, cerebellum, hypothalamus, thalamus, and brainstem, are 330 phylogenetically older with priority over other (younger, more anterior) regions for O₂ 331supply given their arguably more critical roles in maintaining cerebral homeostasis 332(Bailey, 2019b).

333

334 Pulmonary responses to hypoxia: peripheral and central respiratory chemoreflex

Throughout hypoxia, V_E increased progressively via O₂-mediated activation of the 335336 peripheral respiratory chemoreflex contributing to a gradual reduction in PetCO₂ and 337reciprocal elevation in PetO₂ (Forster et al., 1971; Goldberg et al., 1992; Sato et al., 1992). 338 However, peripheral respiratory chemoreflex-induced hyperventilation failed to fully 339 compensate for the reduction in CDO_2 in hypoxia. The ventilatory response is also 340 sensitive to changes in PETCO₂ regulated by the central respiratory chemoreflex (Forster et al., 1971; Sato et al., 1992; Fatemian & Robbins, 1998, 2001). In both normoxia and 341342hypoxia, this has both fast (peripheral respiratory chemoreflex) and slow (central 343respiratory chemoreflex) components (Pedersen et al., 1999). In the present study, we demonstrated that the VE/PETCO2 response (central respiratory chemoreflex), was not 344affected by hypoxia. In contrast, the V E/PETO2 response (peripheral respiratory 345346 chemoreflex) progressively increased in hypoxia, observations that confer with previous

347 studies highlighting a selective preference for the fast over the slow component 348 (Fatemian & Robbins, 2001; Smith *et al.*, 2017). Importantly, the hypoxia-induced 349 reduction in $P_{ET}O_2$ or CaO_2 was inhibited, changes that were independent of Hb since 350 the latter remained invariant throughout. This finding indicates that the change in 351 $P_{ET}O_2$ may be due to peripheral respiratory chemoreflex activation to offset the reduction 352 in CDO_2 . However, further research is warranted to fully understand the (cerebral) 353 bioenergetic consequences of this response.

354

355 Cerebrovascular responses to hypoxia: CBF and CDO₂

356 In the present study, ICA, VA blood flow and gCBF increased in hypoxia, whereas ECA 357blood flow did not change consistent with previous research (Lewis et al., 2014). An 358elevation in CBF compensates for systemic hypoxaemia and acts to preserve substrate 359(O_2 and glucose) delivery to the brain to maintain cerebral homeostasis (Bailey *et al.*, 360 2017a; Bailey, 2019a, b). ICA blood flow (a surrogate for anterior perfusion) increased, 361reaching its peak by the 2nd h of hypoxia before gradually decreasing there-on-in to 362 values comparable with that observed in normoxia. The gCBF response profile was 363 mostly attributable to changes in ICA blood.

364 In contrast, the initial increase in VA flow (surrogate for posterior CBF) was 365well maintained throughout hypoxia. ICA diameter increased whereas blood velocity 366 gradually decreased throughout hypoxia, thus accounting for the observed progressive 367 reduction in blood flow. In contrast, VA diameter remained invariant whereas blood 368 velocity tended to increase throughout hypoxia. These findings highlight the differential 369 contributions of diameter and velocity to the overall CBF response in the anterior and 370 posterior cerebral circulation. Interestingly, although there is a significant difference in 371 blood flow response between cerebral arteries, the CVC response profile was comparable 372for all arteries. Furthermore, the CVC responses to altered PETO2 and PETCO2 remained 373unchanged tentatively suggesting that the selective reduction in ICA blood flow may be 374prove the consequence of reduced ABP. However, we are unclear as to the specific 375mechanism(s) responsible for this differential regulation between arteries, though 376 speculate it may be related to subtle anatomical differences in the cerebral pressure, 377 strain, and shear stress phenotype in combination with possible differences in local blood

378 rheology (Calverley *et al.*, 2020) that although beyond the scope of the present study,
379 warrant further examination.

380 These results confer in part with the findings of a previous study (Lewis *et al.*, 381 2014) that reported a more marked increase in VA compared to ICA blood flow during 6 382h passive exposure to hypoxia. It has been suggested that selective site-specific changes 383 in hypoxia-induced cerebral vasodilation may be subject to redox-regulation (Bailey et 384al., 2017a; Bailey et al., 2018) and associated differences in sensitivity to prostaglandins 385(Fan et al., 2011; Harrell & Schrage, 2014), adenosine (Bowton et al., 1988; Meno et al., 386 1993) and sympathetic nerve activity (Curran-Everett et al., 1992; Ainslie & Ogoh, 2010). 387More importantly, in the present study, ICA CDO_2 was lower in hypoxia despite the 388 increase in ICA blood flow, implying that the observed hyperaemia was inadequate and 389 could not fully compensate for arterial desaturation and lower prevailing CaO₂. In 390 contrast, VA and ECA CDO₂ were well maintained throughout hypoxia.

391Our previous studies (Ogoh et al., 2008; Ogoh et al., 2009) have highlighted the 392functional interaction between exercise-induced cardiopulmonary responses to CO₂ with 393 CBF regulation for the maintenance of CO₂ homeostasis. However, these studies focused 394exclusively on the anterior cerebral circulation. We have consistently (Ogoh et al., 2013b; 395Ogoh et al., 2014b) demonstrated that poikilocapnic (i.e. hypocapnic) hypoxia does not 396 increase anterior CBF (unchanged middle cerebral artery blood flow velocity or ICA blood 397 flow) whereas increases have been consistently observed in response to isocapnic hypoxia. 398 These findings indicate that hyperventilation-induced hypocapnia mediated by the 399 peripheral respiratory chemoreflex antagonizes anterior cerebral vasodilation and 400 consequent CDO_2 in hypoxia.

401 In contrast, acute hypoxia increased posterior CBF (VA blood flow) and CDO₂ 402 (Ogoh et al., 2013b). These findings suggest that the anterior cerebrovasculature is more 403sensitive to hypocapnia compared to the posterior circulation. Indeed, the human brain 404has evolved heightened sensitivity to PaCO₂/H⁺ (more so than PaO₂) that extends 405throughout the cerebrovasculature, from the large extracranial and intracranial conduit 406and middle cerebral arteries through to the smallest pial arterioles and parenchymal 407vessels, prioritizing the buffering of brain tissue pH for stabilization of chemosensory 408 and autonomic control at the level of the brainstem (Bailey et al., 2017b). 409 Cerebrovascular CO_2 reactivity in the ECA and VA is lower than that of the ICA (Sato *et* 410 *al.*, 2012b). It has been reported that acute hypoxia attenuated cerebrovascular CO_2 411 reactivity in the ICA (Ogoh *et al.*, 2014b), however, in the present study, there was no 412 difference in CVC to changes in $P_{ET}CO_2$ between arteries, indicating that 413 cerebrovascular CO_2 reactivity in the ICA exceeds that of ECA and VA.

414 Previous studies suggest that changes in Q contribute to CBF at rest and 415 during exercise in normoxia (Ogoh *et al.*, 2005; Ogoh *et al.*, 2007). However, in the 416 present study, the contribution of Q to VA and ECA blood flow remained unchanged, 417 while that of ICA blood flow decreased throughout hypoxia. These findings suggest that

418 the effect of the hypoxia-induced increase in Q on CBF and consequent ${
m CDO}_2$

- 419 regulation may be minimal.
- 420

421 AMS: mechanisms and pathogenesis

422Traditionally, AMS has been considered a mild form of high-altitude cerebral oedema 423 (HACE, the most malignant of all HA illness, oftentimes proving fatal) and that both 424syndromes share common pathophysiology linked by intracranial hypertension 425subsequent to vasogenic oedematous brain swelling, at opposing ends of a clinical 426continuum. An increase in intracranial pressure could potentially result in the 427mechanical stimulation of pain-sensitive unmyelinated fibres that reside within the trigeminovascular system, triggering the symptoms of headache (Bailey et al., 2009a). 428429However, more recent evidence suggests that functional impairment in cerebral 'venous 430 outflow' at the level of the transverse venous sinus may prove the 'unifying' risk factor 431for AMS (Wilson et al., 2013). In the present study, four out of eight participants (50 %) 432were diagnosed with clinical AMS. In these participants, the sustained elevation in ECA 433 blood flow persisted throughout hypoxia and was proportional to symptom. These 434preliminary findings tentatively suggest that ECA vasodilatation may prove an 435alternative hemodynamic risk factor for AMS. However, we exercise caution and further 436 research is warranted given that there was a clear uncoupling between the kinetics of 437ECA vasodilatation (early and sustained) and more progressive evolution of neurological 438sequelae. Rather than discount this hypothesis, it highlights the unavoidable 439challenges/limitations when attempting to correlate haemodynamic with symptomatic

440 data, complicated by markedly different onset kinetics.

441We can only speculate regarding the 'potential' underlying mechanisms linking 442ECA vasodilation to the complex neurological sequelae that define AMS. Although 443controversial (Shevel, 2011), extracranial vasodilatation and distention of terminal 444branches of the ECA has been identified as a potential source of pain in migraine (Ray, 4451940) which shares some phenotypical features with that of AMS (Broessner et al., 2016). 446 The ECA primarily supplies blood to the face, neck and meningeal branches with the 447middle meningeal artery (MMA) supplying the dura mater that is richly innervated by 448trigeminal sensory afferents (Mayberg et al., 1984).

449 Subtle distension of the MMA in hypoxia such as that observed in the present 450study could potentially initiate the release of vasoactive peptides from activated dural 451trigeminal nerve endings that ultimately converge on the pain pathway (Khan et al., 4522019). Indeed, surgical cauterization of the terminal branches of the ECA (including the 453superficial temporal artery) is routinely employed in patients with migraine (Shevel, 4542013). Furthermore, ECA 'flow diversion' (and subsequent AMS) may be viewed as a 455potentially adaptive neuroprotective response that serves to prevent cerebral 456hyperperfusion-mediated structural damage to the neurovascular unit, including the 457blood-brain barrier that is especially vulnerable especially in the face of impaired 458autoregulation and elevated cerebral oxidative-nitrosative stress (Bailey et al., 2009b; 459Bailey et al., 2009c). Clearly, more research is warranted in a 'higher-risk' setting taking 460 advantage of rapid ascent to terrestrial high-altitude to confirm these laboratory-based 461observations and further establish its potential mechanistic bases.

462

463 Limitations

There are several limitations to the present study that warrant consideration. While we observed an apparent elevation in Hb, this likely reflected a dehydration-induced relative hemoconcentration since it was common to both inspirates. The relatively small sample size employed, despite a repeated measures design, limited our ability to detect differences in select variables owing to power constraints. We focused exclusively on young healthy men to avoid the potential cerebrovascular confounds associated with female sex hormones (Krejza *et al.*, 2013). While a recent study indicated that cerebral 471perfusion at high-altitude did not change as a function of sex, this is not a universal 472finding justifying the inclusion of mixed sex sampling in future research (Liu *et al.*, 2016). 473Furthermore, we were not in a position to directly assess the central respiratory 474chemoreflex since we did not include a hyperoxic trial to eliminate any potential 475confounding contributions from the peripheral respiratory chemoreflex. In addition, we 476measured it in only six of eight participants in light of unforeseen technical complications. 477Equally, it is eminently plausible that the observed reduction in ICA CDO₂ may have 478been compensated by a reciprocal elevation in (cerebral) O_2 extraction as previously 479documented in a similar group of participants exposed to a comparable hypoxic stimulus 480(Bailey et al., 2009c). However, given the absence of invasive arterio-jugular venous 481sampling, we were not in a position to formally address this. Finally, the peripheral respiratory chemoreflex was identified via steady-state changes in V_E during hypoxia. 482Thus, changes in VE/PETCO2 and VE/PETO2 need to be interpreted with caution since 483484they reflect surrogate, albeit important, measures of central and peripheral respiratory 485chemoreflexes respectively.

486

487In conclusion, the present study demonstrates that passive exposure to hypoxia alters 488CBF responses in the anterior and posterior cerebral circulation with CDO_2 better 489 preserved in the latter. The observed heterogeneity was likely related to the differential 490 CBF response to hypoxia rather than different sensitivities to O_2 and CO_2 mediated by 491 the respiratory chemoreflex. Finally, ECA vasodilation may prove an alternative 492hemodynamic risk factor that predisposes to AMS. Collectively, these findings provide 493additional new insight into the compensatory mechanisms that serve to cerebral 494 bioenergetics.

495	Acknowledgments
496	We appreciate the commitment of all participants of this study.
497	
498	Finding
499	S.O. is supported by a Grant-in-Aid for Scientific Research [grant number 15H003098]
500	from the Japanese Ministry of Education, Culture, Sports, Science and Technology. DMB
501	was supported by a Royal Society Wolfson Research Fellowship (#WM170007), Japan
502	Society for the Promotion of Science (#JSPS/OF317) and Higher Education Funding
503	Council for Wales (postdoctoral fellowships for BSS and AI).
504	
505	Data availability statement
506	The datasets during and/or analyzed during the current study available from the
507	corresponding author on reasonable request.
508	
509	Disclosure of conflict interests
510	No conflicts of interest, financial or otherwise, are declared by the authors.
511	
512	Author Contributions
513	Author contributions: S.O., and B.S.S and D.M.B. conception and design of research;
514	S.O., T.W., B.S.S., H.T., A.I., T.S.O., T.A.C., L.F., D.M.B. performed experiments; S.O.,
515	T.W., S.S., B.S.S., H.W., T.M. and D.M.B. analyzed data; S.O., T.W., B.S.S. and D.M.B.
516	interpreted results of experiments; T.W. prepared figures; S.O. and D.M.B. drafted
517	manuscript; all authors edited and revised manuscript; all authors approved final

518 version of manuscript.

519	References
520	Ainslie PN, Hoiland RL & Bailey DM (2016). Lessons from the laboratory; integrated
521	regulation of cerebral blood flow during hypoxia. Exp Physiol 101, 1160-1166.
522	
523	Ainslie PN & Ogoh S (2010). Regulation of cerebral blood flow in mammals during chronic
524	hypoxia: a matter of balance. Exp Physiol 95, 251-262.
525	
526	Bailey DM (2019a). Oxygen and brain death; back from the brink. <i>Exp Physiol</i> 104 , 1769-
527	1779.
528	
529	Bailey DM (2019b). Oxygen, evolution and redox signalling in the human brain; quantum
530	in the quotidian. J Physiol 597, 15-28.
531	
532	Bailey DM, Bartsch P, Knauth M & Baumgartner RW (2009a). Emerging concepts in acute
533	mountain sickness and high-altitude cerebral edema: from the molecular to the
534	morphological. Cell Mol Life Sci 66, 3583-3594.
535	
536	Bailey DM, Davies B, Castell LM, Newsholme EA & Calam J (2001). Physical exercise and
537	normobaric hypoxia: independent modulators of peripheral cholecystokinin
538	metabolism in man. JAppl Physiol (1985) 90, 105-113.
539	
540	Bailey DM, Evans KA, James PE, McEneny J, Young IS, Fall L, Gutowski M, Kewley E,
541	McCord JM, Moller K & Ainslie PN (2009b). Altered free radical metabolism in
542	acute mountain sickness: implications for dynamic cerebral autoregulation and
543	blood-brain barrier function. J Physiol 587, 73-85.
544	
545	Bailey DM, Rasmussen P, Evans KA, Bohm AM, Zaar M, Nielsen HB, Brassard P,
546	Nordsborg NB, Homann PH, Raven PB, McEneny J, Young IS, McCord JM &
547	Secher NH (2018). Hypoxia compounds exercise-induced free radical formation in
548	humans; partitioning contributions from the cerebral and femoral circulation. Free
549	<i>Radic Biol Med</i> 124 , 104-113.
550	
551	Bailey DM, Rasmussen P, Overgaard M, Evans KA, Bohm AM, Seifert T, Brassard P, Zaar
552	M, Nielsen HB, Raven PB & Secher NH (2017a). Nitrite and S-Nitrosohemoglobin
553	Exchange Across the Human Cerebral and Femoral Circulation: Relationship to
554	Basal and Exercise Blood Flow Responses to Hypoxia. Circulation 135, 166-176.

556	Bailey DM, Roukens R, Knauth M, Kallenberg K, Christ S, Mohr A, Genius J, Storch-
557	Hagenlocher B, Meisel F, McEneny J, Young IS, Steiner T, Hess K & Bartsch P
558	(2006). Free radical-mediated damage to barrier function is not associated with
559	altered brain morphology in high-altitude headache. J Cereb Blood Flow Metab 26,
560	99-111.
561	
562	Bailey DM, Taudorf S, Berg RM, Lundby C, McEneny J, Young IS, Evans KA, James PE,
563	Shore A, Hullin DA, McCord JM, Pedersen BK & Moller K (2009c). Increased
564	cerebral output of free radicals during hypoxia: implications for acute mountain
565	sickness? Am J Physiol Regul Integr Comp Physiol 297, R1283-1292.
566	
567	Bailey DM, Willie CK, Hoiland RL, Bain AR, MacLeod DB, Santoro MA, DeMasi DK,
568	Andrijanic A, Mijacika T, Barak OF, Dujic Z & Ainslie PN (2017b). Surviving
569	Without Oxygen: How Low Can the Human Brain Go? High Alt Med Biol 18, 73-79.
570	
571	Bowton DL, Haddon WS, Prough DS, Adair N, Alford PT & Stump DA (1988). Theophylline
572	effect on the cerebral blood flow response to hypoxemia. <i>Chest</i> 94 , 371-375.
573	
574	Broessner G, Rohregger J, Wille M, Lackner P, Ndayisaba JP & Burtscher M (2016).
575	Hypoxia triggers high-altitude headache with migraine features: A prospective trial.
576	<i>Cephalalgia</i> 36, 765-771.
577	
578	Caldwell HG, Coombs GB, Howe CA, Hoiland RL, Patrician A, Lucas SJE & Ainslie PN
579	(2020). Evidence for temperature-mediated regional increases in cerebral blood flow
580	during exercise. <i>J Physiol</i> 598 , 1459-1473.
581	
582	Calverley TA, Ogoh S, Marley CJ, Steggall M, Marchi N, Brassard P, Lucas SJE, Cotter JD,
583	Roig M, Ainslie PN, Wisloff U & Bailey DM (2020). HIITing the brain with exercise;
584	mechanisms, consequences and practical recommendations. Journal of Physiology.
585	
586	Costa KM, Accorsi-Mendonca D, Moraes DJ & Machado BH (2014). Evolution and
587	physiology of neural oxygen sensing. Front Physiol 5, 302.
588	
589	Curran-Everett DC, Meredith MP & Krasney JA (1992). Acclimatization to hypoxia alters
590	cerebral convective and diffusive O2 delivery. <i>Respir Physiol</i> 88, 355-371.

591	
592	Dahan A, van den Elsen MJ, Berkenbosch A, DeGoede J, Olievier IC, van Kleef JW & Bovill
593	JG (1994). Effects of subanesthetic halothane on the ventilatory responses to
594	hypercapnia and acute hypoxia in healthy volunteers. Anesthesiology 80, 727-738.
595	
596	Dempsey JA, Powell FL, Bisgard GE, Blain GM, Poulin MJ & Smith CA (2014). Role of
597	chemoreception in cardiorespiratory acclimatization to, and deacclimatization from,
598	hypoxia. JAppl Physiol (1985) 116, 858-866.
599	
600	Edvinsson L, Owman C & Sjoberg NO (1976). Autonomic nerves, mast cells, and amine
601	receptors in human brain vessels. A histochemical and pharmacological study. Brain
602	<i>Res</i> 115, 377-393.
603	
604	Ellingsen I, Liestol K, Sydnes G, Hauge A & Nicolaysen G (1987a). Arterial P CO2 and lung
605	ventilation in man exposed to 1-5% CO2 in the inspired gas. Acta Physiol Scand
606	129, 269-276.
607	
608	Ellingsen I, Sydnes G, Hauge A, Zwart JA, Liestol K & Nicolaysen G (1987b). CO2
609	sensitivity in humans breathing 1 or 2% CO2 in air. Acta Physiol Scand 129, 195-
610	202.
611	
612	Fan JL, Burgess KR, Thomas KN, Peebles KC, Lucas SJ, Lucas RA, Cotter JD & Ainslie
613	PN (2011). Influence of indomethacin on the ventilatory and cerebrovascular
614	responsiveness to hypoxia. Eur J Appl Physiol 111, 601-610.
615	
616	Fatemian M & Robbins PA (1998). Human ventilatory response to CO2 after 8 h of
617	isocapnic or poikilocapnic hypoxia. JAppl Physiol (1985) 85, 1922-1928.
618	
619	Fatemian M & Robbins PA (2001). Selected contribution: chemoreflex responses to CO2
620	before and after an 8-h exposure to hypoxia in humans. JAppl Physiol (1985) 90,
621	1607-1614; discussion 1606.
622	
623	Forster HV, Dempsey JA, Birnbaum ML, Reddan WG, Thoden J, Grover RF & Rankin J
624	(1971). Effect of chronic exposure to hypoxia on ventilatory response to CO 2 and
625	hypoxia. JAppl Physiol 31 , 586-592.
626	

627	Garcia N, Hopkins SR, Elliott AR, Aaron EA, Weinger MB & Powell FL (2001). Ventilatory
628	response to 2 ⁻ h sustained hypoxia in humans. <i>Respir Physiol</i> 124 , 11-22.
629	
630	Goldberg SV, Schoene RB, Haynor D, Trimble B, Swenson ER, Morrison JB & Banister EJ
631	(1992). Brain tissue pH and ventilatory acclimatization to high altitude. $JAppl$
632	<i>Physiol (1985)</i> 72, 58-63.
633	
634	Harrell JW & Schrage WG (2014). Cyclooxygenase-derived vasoconstriction restrains
635	hypoxia-mediated cerebral vasodilation in young adults with metabolic syndrome.
636	Am J Physiol Heart Circ Physiol 306, H261-269.
637	
638	Hirasawa AI, Sato K, Yoneya M, Sadamoto T, Bailey DM & Ogoh S (2016). Heterogeneous
639	Regulation of Brain Blood Flow during Low-Intensity Resistance Exercise. Med Sci
640	Sports Exerc 48, 1829-1834.
641	
642	Hoiland RL, Bain AR, Rieger MG, Bailey DM & Ainslie PN (2016). Hypoxemia, oxygen
643	content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp
644	<i>Physiol</i> 310 , R398-413.
645	
646	Iversen HK, Olesen J & Tfelt-Hansen P (1989). Intravenous nitroglycerin as an
647	experimental model of vascular headache. Basic characteristics. Pain 38, 17-24.
648	
649	Khan S, Amin FM, Christensen CE, Ghanizada H, Younis S, Olinger ACR, de Koning PJH,
650	Larsson HBW & Ashina M (2019). Meningeal contribution to migraine pain: a
651	magnetic resonance angiography study. Brain 142, 93-102.
652	
653	Kimura H, Tanaka M, Nagao K, Niijima M, Masuyama S, Mizoo A, Uruma T, Tatsumi K,
654	Kuriyama T, Masuda A, Kobayashi T & Honda Y (1998). A new aspect of the carotid
655	body function controlling hypoxic ventilatory decline in humans. Appl Human Sci
656	17, 131-137.
657	
658	Krejza J, Rudzinski W, Arkuszewski M, Onuoha O & Melhem ER (2013). Cerebrovascular
659	reactivity across the menstrual cycle in young healthy women. <i>Neuroradiol J</i> 26 ,
660	413-419.
661	
662	Lakens D (2013). Calculating and reporting effect sizes to facilitate cumulative science: a

663	practical primer for t-tests and ANOVAs. Front Psychol 4, 863.
664	
665	Lance JW (1993). Current concepts of migraine pathogenesis. <i>Neurology</i> 43 , S11-15.
666	
667	Lewis NC, Messinger L, Monteleone B & Ainslie PN (2014). Effect of acute hypoxia on
668	regional cerebral blood flow: effect of sympathetic nerve activity. JAppl Physiol
669	<i>(1985)</i> 116, 1189-1196.
670	
671	Liu J, Liu Y, Ren LH, Li L, Wang Z, Liu SS, Li SZ & Cao TS (2016). Effects of race and sex
672	on cerebral hemodynamics, oxygen delivery and blood flow distribution in response
673	to high altitude. <i>Sci Rep</i> 6 , 30500.
674	
675	Mahamed S & Duffin J (2001). Repeated hypoxic exposures change respiratory chemoreflex
676	control in humans. <i>J Physiol</i> 534, 595-603.
677	
678	Mayberg MR, Zervas NT & Moskowitz MA (1984). Trigeminal projections to supratentorial
679	pial and dural blood vessels in cats demonstrated by horseradish peroxidase
680	histochemistry. J Comp Neurol 223, 46-56.
681	
682	Meno JR, Ngai AC & Winn HR (1993). Changes in pial arteriolar diameter and CSF
683	adenosine concentrations during hypoxia. J Cereb Blood Flow Metab 13, 214-220.
684	
685	Ogoh S, Ainslie PN & Miyamoto T (2009). Onset responses of ventilation and cerebral blood
686	flow to hypercaphia in humans: rest and exercise. <i>J Appl Physiol (1985)</i> 106, 880-
687	886.
680	Orch & Prothers PM Pornes O Fuhank WI Howking MN Durkougethe & AOV & Poron
600	De (2005). The effect of changes in condice output on middle conchuel entering mach
601	blood valueity at rest and during everying. <i>LPhysici</i> 569 , 607-704
692	blood velocity at rest and during exercise. 57 hysiol 505, 657 764.
693	Orch S. Dalsgaard MK. Secher NH & Raven PB (2007). Dynamic blood pressure control
694	and middle cerebral artery mean blood velocity variability at rest and during
695	exercise in humans Acta Physiol (Oxf) 191 3-14
696	
697	Ogoh S. Havashi N. Inagaki M. Ainslie PN & Mivamoto T (2008). Interaction between the
608	ventilatory and cerebroyascular responses to hypo- and hypercappia at rest and

699	during exercise. J Physiol 586, 4327-4338.
700	
701	Ogoh S, Lericollais R, Hirasawa A, Sakai S, Normand H & Bailey DM (2014a). Regional
702	redistribution of blood flow in the external and internal carotid arteries during
703	acute hypotension. Am J Physiol Regul Integr Comp Physiol 306, R747-751.
704	
705	Ogoh S, Moralez G, Washio T, Sarma S, Hieda M, Romero SA, Cramer MN, Shibasaki M &
706	Crandall CG (2017). Effect of increases in cardiac contractility on cerebral blood
707	flow in humans. Am J Physiol Heart Circ Physiol 313, H1155-H1161.
708	
709	Ogoh S, Nakahara H, Okazaki K, Bailey DM & Miyamoto T (2013a). Cerebral
710	hypoperfusion modifies the respiratory chemoreflex during orthostatic stress. Clin
711	<i>Sci (Lond)</i> 125, 37-44.
712	
713	Ogoh S, Nakahara H, Ueda S, Okazaki K, Shibasaki M, Subudhi AW & Miyamoto T
714	(2014b). Effects of acute hypoxia on cerebrovascular responses to carbon dioxide.
715	<i>Exp Physiol</i> 99 , 849-858.
716	Orch S. Sata K. Nakahara H. Okazaki K. Subudhi AW & Miyamata T. (2012b). Effect of
710	ogon S, Sato K, Nakanara H, Okazaki K, Subudin Aw & Miyamoto T (2013b). Effect of
710	08 602-608
720	30, 032 030.
721	Pedersen ME, Fatemian M & Robbins PA (1999). Identification of fast and slow ventilatory
722	responses to carbon dioxide under hypoxic and hyperoxic conditions in humans. J
723	<i>Physiol</i> 521 Pt 1 , 273-287.
724	
725	Ray CN (1940). Was the American Mano and Metate an Invention Made during Pleistocene
726	Time? <i>Science</i> 91 , 190-191.
727	
728	Roach RC, Hackett PH, Oelz O, Bartsch P, Luks AM, MacInnis MJ, Baillie JK & Lake
729	Louise AMSSCC (2018). The 2018 Lake Louise Acute Mountain Sickness Score.
730	High Alt Med Biol 19, 4-6.
731	
732	Robbins PA (1995). Hypoxic ventilatory decline: site of action. JAppl Physiol (1985) 79, 373-
733	374.
734	

735	Sampson JB, Cymerman A, Burse RL, Maher JT & Rock PB (1983). Procedures for the
736	measurement of acute mountain sickness. Aviat Space Environ Med 54, 1063-1073.
737	
738	Sanchez del Rio M & Moskowitz MA (1999). High altitude headache. Lessons from
739	headaches at sea level. Adv Exp Med Biol 474, 145-153.
740	
741	Sato K, Fisher JP, Seifert T, Overgaard M, Secher NH & Ogoh S (2012a). Blood flow in
742	internal carotid and vertebral arteries during orthostatic stress. Exp Physiol 97,
743	1272-1280.
744	
745	Sato K, Ogoh S, Hirasawa A, Oue A & Sadamoto T (2011). The distribution of blood flow in
746	the carotid and vertebral arteries during dynamic exercise in humans. J Physiol
747	589, 2847-2856.
748	
749	Sato K, Sadamoto T, Hirasawa A, Oue A, Subudhi AW, Miyazawa T & Ogoh S (2012b).
750	Differential blood flow responses to CO(2) in human internal and external carotid
751	and vertebral arteries. J Physiol 590, 3277-3290.
752	
753	Sato M, Severinghaus JW, Powell FL, Xu FD & Spellman MJ, Jr. (1992). Augmented
754	hypoxic ventilatory response in men at altitude. JAppl Physiol (1985) 73, 101-107.
755	
756	Shevel E (2011). The extracranial vascular theory of migraine: an artificial controversy. J
757	Neural Transm (Vienna) 118, 525-530.
758	
759	Shevel E (2013). Intracranial and extracranial arteries in migraine. <i>Lancet Neurol</i> 12 , 847.
760	
761	Smith ZM, Krizay E, Sa RC, Li ET, Scadeng M, Powell FL, Jr. & Dubowitz DJ (2017).
762	Evidence from high-altitude acclimatization for an integrated cerebrovascular and
763	ventilatory hypercapnic response but different responses to hypoxia. JAppl Physiol
764	<i>(1985)</i> 123, 1477-1486.
765	
766	Subudhi AW, Panerai RB & Roach RC (2010). Effects of hypobaric hypoxia on cerebral
767	autoregulation. Stroke 41, 641-646.
768	
769	Vanzetti G (1966). An azide-methemoglobin method for hemoglobin determination in blood.
770	J Lab Clin Med 67, 116-126.

771	
772	Willie CK, Macleod DB, Shaw AD, Smith KJ, Tzeng YC, Eves ND, Ikeda K, Graham J,
773	Lewis NC, Day TA & Ainslie PN (2012). Regional brain blood flow in man during
774	acute changes in arterial blood gases. <i>Journal of Physiology</i> 590 , 3261-3275.
775	
776	Wilson MH, Davagnanam I, Holland G, Dattani RS, Tamm A, Hirani SP, Kolfschoten N,
777	Strycharczuk L, Green C, Thornton JS, Wright A, Edsell M, Kitchen ND, Sharp DJ,
778	Ham TE, Murray A, Holloway CJ, Clarke K, Grocott MP, Montgomery H, Imray C,
779	Birmingham Medical Research Expeditionary S & Caudwell Xtreme Everest
780	Research G (2013). Cerebral venous system and anatomical predisposition to high-
781	altitude headache. Ann Neurol 73, 381-389.

	condition			-	time					<i>P</i> -valu	ie	Eff	fect size	$e(\eta^2)$
		1h	2h	3h	4h	5h	6h	7h						
									condition	time	interaction	condition	time	interaction
	Ν	64 ± 27	63 ± 19	57 ± 13	59 ± 10	63 ± 24	55 ± 10	56 ± 9	0.051	0.007	0.001	0.066	0.017	0.104
HR (beat/min)	Н	64 ± 12	64 ± 11	64 ± 11	68 ± 16	67 ± 9	72 ± 14	73 ± 11	0.051	0.887	0.081	0.066	0.017	0.104
MAD(Ν	92 ± 13	93 ± 9	92 ± 5	94 ± 11	91 ± 7	96 ± 7	90 ± 14	0.020	0 070	0.505	0.166	0.010	0.026
MAP (mmHg)	Н	85 ± 9	85 ± 12	85 ± 12	83 ± 19	80 ± 13	77 ± 20	80 ± 12	0.039	0.878	0.595	0.100	0.019	0.026
	Ν	6.1 ± 2.3	6.1 ± 1.7	5.6 ± 1.1	5.9 ± 0.8	5.6 ± 0.8	5.5 ± 0.9	5.6 ± 0.9	0.004	0.615	0.005	0 129	0.026	0.086
Q (L/min)	Н	6.4 ± 1.1	6.4 ± 1.1	6.5 ± 1.0	6.8 ± 1.6	6.7 ± 0.9	7.2 ± 1.4	7.3 ± 1.1	0.000	0.015	0.095	0.138	0.020	0.080
TVC	Ν	66 ± 17	65 ± 15	60 ± 10	64 ± 11	62 ± 8	58 ± 9	65 ± 20	0.004	0 271	0.015	0.215	0.046	0.078
(ml/min/mmHg)	Н	$76 \pm 18*$	$77 \pm 22*$	$77 \pm 15*$	88 ± 35	$86 \pm 20*$	$104 \pm 52*$	$95 \pm 25*$	0.004	0.271	0.015	0.215	0.040	0.078
DD (breath/min)	Ν	18 ± 6	18 ± 4	18 ± 3	18 ± 3	19 ± 2	18 ± 3	19 ± 4	0 121	0 1 1 0	0 244	0.040	0 100	0.050
KK (breaul/min)	Н	17 ± 6	18 ± 5	20 ± 7	19 ± 7	26 ± 12	22 ± 6	22 ± 5	0.121	0.110	0.244	0.040	0.100	0.039
$V_{\pi}(\mathbf{I})$	Ν	1.0 ± 0.4	0.9 ± 0.2	0.8 ± 0.2	0.8 ± 0.2	0.8 ± 0.3	0.7 ± 0.2	0.7 ± 0.2	0 560	0 005	0.456	0 125	0.112	0.028
V1(L)	Н	1.1 ± 0.3	1.0 ± 0.2	0.9 ± 0.3	1.1 ± 0.2	0.9 ± 0.1	1.0 ± 0.3	1.0 ± 0.2	0.500	0.005	0.450	0.125	0.112	0.028
	Ν	16.8 ± 6.2	15.5 ± 4.3	13.7 ± 3.1	13.8 ± 3.1	13.7 ± 3.9	12.8 ± 3.1	13.3 ± 3.5	0 008	0.415	0 134	0.232	0.028	0.083
V _E (L/min)	Н	17.6 ± 3.0	17.9 ± 2.9	16.9 ± 5.7	18.9 ± 6.3	21.5 ± 6.5	19.1 ± 2.8	21.1 ± 3.4	0.000	0.415	0.134	0.252	0.028	0.005
$P_{r,r}O_{2}(mmHg)$	Ν	95.6 ± 5.9	93.7 ± 4.1	91.8 ± 3.3	91.4 ± 3.4	91.1 ± 4.2	91.5 ± 2.5	90.9 ± 3.0	< 0.001	0 689	~0 001	0.972	< 0.001	1 0.005
1 E102 (mm12)	Н	$39.0\pm5.4*$	38.7 ± 3.7*	42.1 ± 3.3*	$43.9\pm4.3*$	$43.8\pm4.2^*$	$42.8 \pm 5.3*$	43.7 ± 3.3*	< 0.001	0.007	<0.001	0.972	< 0.001	0.005
$P_{ET}CO_2(mmH\sigma)$	Ν	41.5 ± 5.1	42.5 ± 4.8	41.4 ± 2.7	42.0 ± 2.8	41.6 ± 3.0	42.0 ± 2.6	41.5 ± 3.0	0 001	0 005	0.059	0.642	0.035	0.026
· E1002 (mm1g)	Н	34.9 ± 3.4	35.6 ± 3.4	33.3 ± 2.2	32.0 ± 2.7	30.5 ± 3.7	31.1 ± 3.2	30.7 ± 3.5	0.001	0.005	0.057	0.072	0.055	0.020

Table 1. Cardiopulmonary responses during 7-hours exposure to normoxia and hypoxia

S=Q (0/)	Ν	98 ± 1	98 ± 1	97 ± 1	98 ± 1	98 ± 1	98 ± 0	98 ± 0	-0.001	0.278	0.124	0 925	0.000	0.015
$SpO_2(\%)$	Н	83 ± 4	83 ± 4	83 ± 4	87 ± 5	86 ± 3	85 ± 7	85 ± 3	<0.001	0.278	0.134	0.825	0.009	0.015
	Ν	141 ± 8	143 ± 8	148 ± 13	147 ± 10	146 ± 6	146 ± 9	146 ± 5	0.160	0.001	0.024	0.020	0.072	0.002
Hb (g/L)	Н	140 ± 11	$132 \pm 6*$	142 ± 11	$147\pm12^\dagger$	$146\pm12^\dagger$	$145\pm11^\dagger$	$146\pm11^\dagger$	0.162	0.001	0.034	0.020	0.273	0.093
	Ν	19.3 ± 1.1	19.5 ± 1.1	20.0 ± 1.7	19.9 ± 1.3	19.8 ± 0.8	19.8 ± 1.2	19.9 ± 0.7	0.001	0.001	0.010	0.500	0.075	0.020
CaO_2 (ml/dL)	Н	16.1 ± 1.5*	15.2 ± 1.3*	$16.3\pm1.6*$	$17.7 \pm 2.0*$	$17.6\pm1.7^{*\dagger\$}$	$17.2 \pm 2.1*$	17.3 ± 1.2*	< 0.001	0.001	0.010	0.508	0.075	0.038

783 Values are means \pm SD. HR, heart rate; MAP, mean arterial pressure; \dot{Q} , cardiac output; TVC, total vascular conductance; RR,

784 respiratory rate; V_T, tidal volume; V_E, ventilation; P_{ET}O₂, end-tidal partial pressure of oxygen; P_{ET}CO₂, end-tidal partial pressure of

carbon dioxide; SpO₂; oxygen arterial saturation; Hb, hemoglobin concentration; CaO₂, arterial content of oxygen. *P < 0.05 different

from normoxia, $^{\dagger}P < 0.05$ different from 1 h, $^{\$}P < 0.05$ different from 3 h.

ICA CDO ₂	MAP (%)		P _{ET} O ₂ (%)		PetCO ₂ (%)		$\Delta V_{\rm E}$ /A	$P_{ET}O_2$. $\Delta V_E / \Delta P_{ET} CO_2$		
(%)							(L/min/r	nmHg)	(L/min/mmHg)		
Participant	rs	Р	rs	Р	rs	Р	rs	Р	rs	Р	
1	0.00	1.00	-0.89	0.01	0.79	0.04	0.82	0.02	0.00	1.00	
2	-0.11	0.82	0.61	0.15	-0.50	0.25	-0.82	0.02	-0.32	0.48	
3	0.14	0.76	0.46	0.29	-0.61	0.15	-0.43	0.34	-0.25	0.59	
4	0.07	0.88	0.36	0.43	-0.36	0.43	-0.43	0.34	-0.43	0.34	
5	0.39	0.38	-0.82	0.02	0.64	0.12	0.75	0.05	0.29	0.53	
6	0.43	0.34	-0.46	0.29	0.71	0.07	0.14	0.76	0.18	0.70	
7	0.61	0.15	0.07	0.88	0.43	0.34	0.86	0.01	0.86	0.01	
8	0.18	0.70	-0.32	0.48	0.29	0.53	0.46	0.29	0.04	0.94	
VA CDO2 (%)	MAF	$\mathbf{MAP}(0/\mathbf{)} \qquad \mathbf{PrrOe}(0/\mathbf{)}$. (%)	$\mathbf{P}_{\mathrm{ET}}(\mathbf{O}_{2}(\%))$		$\Delta V_{\rm E}$ / $\Delta P_{\rm ET}O_2$		$\Delta V_E / \Delta P_{ET} CO_2$		
(11 CD 02 (70)	1011 11	(70)	1 2102	(, 0)	TEICC	2(70)	(L/min/r	nmHg)	(L/min/r	nmHg)	
Participant	rs	Р	rs	Р	rs	Р	rs	Р	rs	Р	
1	0.00	1.00	-0.54	0.22	0.29	0.53	0.61	0.15	0.00	1.00	
2	-0.04	0.94	-0.25	0.59	0.29	0.53	0.11	0.82	-0.82	0.02	
3	0.04	0.94	0.14	0.76	-0.36	0.43	0.11	0.82	0.11	0.82	
4	-0.46	0.29	0.39	0.38	-0.75	0.05	-0.29	0.53	-0.29	0.53	
5	0.61	0.15	-0.54	0.22	0.57	0.18	0.21	0.64	-0.25	0.59	
6	0.36	0.43	-0.29	0.53	-0.04	0.94	-0.14	0.76	-0.29	0.53	

Table 2 Relationships between site-specific cerebral oxygen delivery and change in respiratory/cerebrovascular responses

7	-0.25	0.59	0.18	0.70	-0.54	0.22	-0.07	0.88	-0.07	0.88
8	-0.54	0.22	0.61	0.15	0.79	0.04	-0.43	0.34	-0.54	0.22
ECA CDO2 (%)	MAP (%)		PetO2 (%)		PetCO ₂ (%)		ΔV _E /ΔP _{ET} O ₂ (L/min/mmHg)		$\Delta V_{\rm E} / \Delta P_{\rm ET} CO_2$ (L/min/mmHg)	
Participant	rs	Р	rs	Р	rs	Р	rs	Р	rs	Р
1	-0.18	0.70	-0.29	0.53	0.57	0.18	0.14	0.76	-0.04	0.94
2	0.00	1.00	-0.07	0.88	0.18	0.70	-0.25	0.59	-0.43	0.34
3	0.54	0.22	0.57	0.18	-0.79	0.04	-0.68	0.09	-0.36	0.43
4	0.79	0.04	0.14	0.76	0.04	0.94	-0.18	0.70	-0.18	0.70
5	0.29	0.53	0.14	0.76	-0.32	0.48	0.43	0.34	0.71	0.07
6	0.50	0.25	-0.11	0.82	0.50	0.25	0.11	0.82	0.04	0.94
7	-0.57	0.18	0.29	0.53	-0.39	0.38	-0.54	0.22	-0.54	0.22
8	0.39	0.38	-0.14	0.76	-0.43	0.34	0.25	0.59	0.50	0.25

788 rs, Spearman's rank correlation coefficient.

condition		time						<i>P</i> -value		e	Effect size (η^2)			
		1h	2h	3h	4h	5h	6h	7h						
									condition	n time	interaction	condition	time	interaction
Internal carotid	artery													
Diamatan (am)	Ν	0.49 ± 0.05	0.50 ± 0.05	0.50 ± 0.05	0.50 ± 0.05	0.51 ± 0.05	0.50 ± 0.05	0.49 ± 0.04	0.005	- 0 001	0.017	0.075	0.124	0.027
Diameter (Cm)	Н	$0.50\pm0.04*$	$0.52\pm0.04*$	$0.52\pm0.04*$	$0.53\pm0.04*$	$0.53\pm0.04*$	$0.53\pm0.05*$	$0.53\pm0.04*$	0.005	< 0.001	0.017	0.075	0.124	0.037
Blood velocity	Ν	30.6 ± 4.7	29.9 ± 4.5	29.3 ± 5.1	30.0 ± 4.3	28.9 ± 3.9	29.5 ± 4.4	30.7 ± 3.9	0.294	- 0 001	0.012	0.000	0.201	0.220
(cm/s)	Н	32.6 ± 6.0	$32.3\pm4.3*$	$31.3\pm5.2*$	$27.8\pm4.1^{\ddagger\$}$	26.7 ± 5.4	$25.8 \pm 5.6^{*\ddagger\$}$	$27.2 \pm 5.8^{*\$}$	0.284	< 0.001	0.012	0.006	0.291	0.229
Vertebral artery	,													
Diamatar (am)	Ν	0.36 ± 0.05	0.37 ± 0.05	0.37 ± 0.05	0.37 ± 0.05	0.37 ± 0.05	0.37 ± 0.06	0.37 ± 0.05	0 105	0.010	0 101	0.007	0.120	0.027
	Н	0.36 ± 0.05	0.38 ± 0.05	0.38 ± 0.06	0.38 ± 0.06	0.38 ± 0.06	0.38 ± 0.06	0.38 ± 0.06	0.195	0.010	0.191	0.007	0.130	0.057
Blood velocity	Ν	18.6 ± 3.0	18.0 ± 3.0	18.0 ± 3.1	18.1 ± 2.6	17.9 ± 2.6	17.4 ± 2.0	18.2 ± 2.5	0.078	0.004	0.072	0.002	0.004	0.050
(cm/s)	Н	21.8 ± 2.6	20.7 ± 3.9	19.6 ± 3.1	18.7 ± 2.8	19.0 ± 2.9	19.4 ± 2.4	19.2 ± 2.6	0.078	0.004	0.075	0.092	0.094	0.050
External carotid	artery													
Diamator (am)	Ν	0.45 ± 0.02	0.45 ± 0.01	0.45 ± 0.01	0.45 ± 0.02	0.45 ± 0.01	0.45 ± 0.00	0.45 ± 0.01	0.001	0.005	5 0.234	0.220	0.103	0.043
	Н	0.45 ± 0.02	0.47 ± 0.02	0.47 ± 0.01	0.47 ± 0.01	0.46 ± 0.01	0.46 ± 0.01	0.47 ± 0.01	0.001	0.005		0.239		
Blood velocity	Ν	20.7 ± 2.5	20.6 ± 2.4	20.3 ± 2.9	19.6 ± 1.5	20.1 ± 2.9	20.1 ± 3.0	19.9 ± 2.1	0.912	0.010	0 506	0.002	0.079	0.020
(cm/s)	Н	22.8 ± 4.6	21.3 ± 3.5	20.6 ± 5.6	19.7 ± 5.3	19.9 ± 5.7	19.2 ± 3.9	19.7 ± 3.2	0.015	0.019	0.390	0.002	0.078	0.030

789 **Table 3.** Cerebrovascular responses to normoxia and hypoxia

790 Values are means \pm SD. **P* < 0.05 different from normoxia, †*P* < 0.05 different from 1 h, ‡*P* < 0.05 different from 2 h, §*P* < 0.05 different from

791 from 3 h and $^{\#}P < 0.05$ from 4 h.

792

condition			time								2			
			1h 2h 3h 4h 5h 6h 7h		7h	<i>P</i> -value		le	Effect size (η)					
									condition	time	interaction	condition	time	interaction
LLS (points)	Ν	0.1 ± 0.4	0.4 ± 0.5	0.4 ± 0.5	0.5 ± 0.8	0.5 ± 0.8	0.5 ± 0.8	0.5 ± 0.8	0.008	0.002	0.005	0.257	0.182	2 0.133
	Н	0.1 ± 0.4	$1.6 \pm 1.4^{*}$	$1.6 \pm 1.2^{*}$	$2.4 \pm 2.0*$	$2.4 \pm 1.6^{*}$	4.1 ± 2.9*	$4.4 \pm 2.8^{*}$		0.003	0.005	0.257		
ESQ-C (a.u.)	Ν	0.00 ± 0.00	0.04 ± 0.05	0.04 ± 0.07	0.03 ± 0.04	0.03 ± 0.04	0.03 ± 0.04	0.03 ± 0.04	0.046	0.030	0.047	0.162	0.131	0.114
	Н	0.00 ± 0.00	0.17 ± 0.25	$0.14 \pm 0.13*$	0.27 ± 0.39	$0.40 \pm 0.47*$	0.63 ± 0.82	$0.74 \pm 0.83*$		0.030	0.047			
Headache score	Ν	0.0 ± 0.0	1.5 ± 2.8	3.9 ± 6.9	6.4 ± 10.9	5.9 ± 10.4	5.1 ± 10.3	4.5 ± 10.4	0.061	0.017	0.002	0 126	0.146	0.076
(mm)	Н	1.3 ± 2.3	11.3 ± 17.1	11.3 ± 10.9	12.5 ± 14.1	13.1 ± 11.6	22.1 ± 21.4	26.9 ± 24.5	0.001	0.017	0.002	0.120	0.140	5 0.076

793 **Table 4.** Acute mountain sickness scores in normoxia and hypoxia

794 Values are means \pm SD. LLS, Lake Louise Score; ESQ-C, Environmental Symptoms Questionnaires-Cerebral symptoms. *P < 0.05

795 different from normoxia.

LLS (points)		ICA blood fl	ow (ml/min)	ECA blood f	low (ml/min)	VA blood fl	ow (ml/min)
	Participant	rs	Р	rs	Р	rs	Р
	1 (AMS+)	-0.185	0.526	0.244	0.4	0.421	0.134
	2 (AMS-)	0.626	0.017	0.367	0.197	-0.41	0.145
	3 (AMS-)	0.444	0.112	0.637	0.014	0.598	0.024
	4 (AMS+)	0.652	0.012	0.546	0.043	0.784	0.001
	5 (AMS+)	0.445	0.111	0.591	0.026	0.529	0.052
	6 (AMS-)	-0.368	0.195	-0.43	0.125	0.595	0.025
	7 (AMS+)	-0.096	0.743	0.709	0.004	0.331	0.248
	8 (AMS-)	0.253	0.382	-0.253	0.382	0.506	0.065
ESÇ	Q-C (a.u.)	ICA blood fl	ow (ml/min)	ECA blood f	low (ml/min)	VA blood fl	ow (ml/min)
	Participant	rs	Р	rs	Р	rs	Р
	1 (AMS+)	-0.302	0.294	0.223	0.443	0.435	0.12
	2 (AMS-)	0.685	0.007	0.464	0.095	-0.53	0.051
	3 (AMS-)	0.464	0.095	0.652	0.012	0.619	0.018
	4 (AMS+)	0.674	0.008	0.603	0.023	0.752	0.002
	5 (AMS+)	0.432	0.123	0.587	0.027	0.543	0.045
	6 (AMS-)	-0.421	0.134	-0.473	0.088	0.563	0.036
	7 (AMS+)	-0.137	0.639	0.771	0.001	0.394	0.163
	8 (AMS-)	0.081	0.783	0.445	0.111	-0.388	0.17
Headach	e score (mm)	ICA blood fl	ow (ml/min)	ECA blood f	low (ml/min)	VA blood fl	ow (ml/min)
_	Participant	rs	Р	rs	Р	ľs	Р
	1 (AMS+)	-0.409	0.147	-0.111	0.706	-0.115	0.695
	2 (AMS-)	N/S	N/S	N/S	N/S	N/S	N/S
	3 (AMS-)	0.449	0.107	0.671	0.009	0.604	0.022
	4 (AMS+)	0.711	0.004	0.631	0.016	0.829	<0.001
	5 (AMS+)	0.287	0.319	0.417	0.138	0.428	0.127

Table 5. Relationships between cerebrovascular measures and acute mountain sickness

6 (AMS-)	-0.277	0.337	-0.351	0.218	0.61	0.02
7 (AMS+)	0.018	0.952	0.515	0.06	0.327	0.253
8 (AMS-)	0.107	0.715	0.537	0.048	-0.501	0.068

 r_s , Spearman's rank correlation coefficient. AMS+/AMS- indicates participants

798 diagnosed with/without clinical (moderate-to-severe) acute mountain sickness.

799 **Figure 1.** Overview of the experimental protocol.

800

Figure 2. The percent changes in $P_{ET}O_2$, $P_{ET}CO_2$, and V_E from normoxia during 7 h hypoxia condition (n = 8). $P_{ET}O_2$, end-tidal partial pressure of oxygen; $P_{ET}CO_2$, end-tidal

- 803 partial pressure of carbon dioxide, VE, ventilation. $^{\dagger}P < 0.05$ different from 1 h, $^{\ddagger}P < 0.05$
- 804 805

different from 2 h.

806 **Figure 3.** The sensitivities of central respiratory chemoreflex (A) (V_E response to

807 hypercapnia under hypoxia condition, n = 6) and peripheral respiratory chemoreflex (B)

808 (V_E response to hypoxia, n = 8). V_E , ventilation; $P_{ET}O_2$, end-tidal partial pressure of

809 oxygen; PETCO₂, end-tidal partial pressure of carbon dioxide. The *P*-value refers to the

810 one-way ANOVA main effect of the time-course changes of hypoxia. †*P*<0.05 different

- 811 from 1 h.
- 812

Figure 4. The ICA, VA, ECA and global cerebral blood flow (A), CVC (B) and CDO₂ (C) response to normoxia and hypoxia (n = 8). ICA, internal carotid artery; VA, vertebral artery; ECA, external carotid artery; CVC, cerebral vascular conductance; CDO₂, cerebral oxygen delivery. *P < 0.05 different from normoxia, †P < 0.05 different from 1 h, *P < 0.05 different from 2 h, *P < 0.05 different from 3 h.

818

Figure 5. The ICA, VA, and ECA CVC response to changes in PETO₂ (A) or PETCO₂ (B) in
hypoxia (n = 8). ICA, internal carotid artery; VA, vertebral artery; ECA, external carotid
artery; CVC, cerebral vascular conductance; PETO₂, end-tidal partial pressure of oxygen;

822 PetCO₂, end-tidal partial pressure of carbon dioxide.

823

Figure 6. The percent change in Q (A) and total vascular conductance (B) in normoxia and hypoxia (n = 8). The change in the contribution of Q to ICA, ECA and VA blood flow during 7h hypoxia condition (C) (n = 8). Q, cardiac output; TVC, total vascular conductance; ICA, internal carotid artery; VA, vertebral artery; ECA, external carotid artery. $^{\dagger}P < 0.05$ different from 1st h, $^{\ddagger}P < 0.05$ different from 2nd h, $^{\$}P < 0.05$ different from 3rd h.

831	Figure 7. ECA blood	l flow response in	participants with	(AMS+, n = 4)	and without AMS
-----	---------------------	--------------------	-------------------	---------------	-----------------

832 (AMS-, n = 4). ECA, external carotid artery; AMS, acute mountain sickness.