1,807 research outputs found

    Effects of submerged vegetation on water clarity across climates

    Get PDF
    A positive feedback between submerged vegetation and water clarity forms the backbone of the alternative state theory in shallow lakes. The water clearing effect of aquatic vegetation may be caused by different physical, chemical, and biological mechanisms and has been studied mainly in temperate lakes. Recent work suggests differences in biotic interactions between (sub)tropical and cooler lakes might result in a less pronounced clearing effect in the (sub)tropics. To assess whether the effect of submerged vegetation changes with climate, we sampled 83 lakes over a gradient ranging from the tundra to the tropics in South America. Judged from a comparison of water clarity inside and outside vegetation beds, the vegetation appeared to have a similar positive effect on the water clarity across all climatic regions studied. However, the local clearing effect of vegetation decreased steeply with the contribution of humic substances to the underwater light attenuation. Looking at turbidity on a whole-lake scale, results were more difficult to interpret. Although lakes with abundant vegetation (>30%) were generally clear, sparsely vegetated lakes differed widely in clarity. Overall, the effect of vegetation on water clarity in our lakes appears to be smaller than that found in various Northern hemisphere studies. This might be explained by differences in fish communities and their relation to vegetation. For instance, unlike in Northern hemisphere studies, we find no clear relation between vegetation coverage and fish abundance or their diet preference. High densities of omnivorous fish and coinciding low grazing pressures on phytoplankton in the (sub)tropics may, furthermore, weaken the effect of vegetation on water clarity

    Climate-dependent CO2 emissions from lakes

    Get PDF
    Inland waters, just as the world's oceans, play an important role in the global carbon cycle. While lakes and reservoirs typically emit CO2, they also bury carbon in their sediment. The net CO2 emission is largely the result of the decomposition or preservation of terrestrially supplied carbon. What regulates the balance between CO2 emission and carbon burial is not known, but climate change and temperature have been hypothesized to influence both processes. We analyzed patterns in carbon dioxide partial pressure (pCO2) in 83 shallow lakes over a large climatic gradient in South America and found a strong, positive correlation with temperature. The higher pCO2 in warmer lakes may be caused by a higher, temperature-dependent mineralization of organic carbon. This pattern suggests that cool lakes may start to emit more CO2 when they warm up because of climate ch

    Cache-Conscious Radix-Decluster Projections

    Get PDF

    Abrupt Climate Change in an Oscillating World.

    Get PDF
    This is the final version of the article. Available from Nature Publishing Group via the DOI in this record.The notion that small changes can have large consequences in the climate or ecosystems has become popular as the concept of tipping points. Typically, tipping points are thought to arise from a loss of stability of an equilibrium when external conditions are slowly varied. However, this appealingly simple view puts us on the wrong foot for understanding a range of abrupt transitions in the climate or ecosystems because complex environmental systems are never in equilibrium. In particular, they are forced by diurnal variations, the seasons, Milankovitch cycles and internal climate oscillations. Here we show how abrupt and sometimes even irreversible change may be evoked by even small shifts in the amplitude or time scale of such environmental oscillations. By using model simulations and reconciling evidence from previous studies we illustrate how these phenomena can be relevant for ecosystems and elements of the climate system including terrestrial ecosystems, Arctic sea ice and monsoons. Although the systems we address are very different and span a broad range of time scales, the phenomena can be understood in a common framework that can help clarify and unify the interpretation of abrupt shifts in the Earth system.This work was carried out under the program of the Netherlands Earth System Science Centre (NESSC), financially supported by the Ministry of Education, Culture and Science (OCW). We are grateful to Chris Huntingford for his constructive comments that helped us to improve the manuscript. We would also like to acknowledge Michel Crucifix, Henk Dijkstra, and Peter Cox for their helpful comments. S.B. is eternally grateful to Nina Engelhardt and the University of Edinburgh for the inspiring working conditions

    Health promotion, disease prevention and periodic health checks: perceptions and practice among family physicians in eastern Mediterranean region

    Get PDF
    Introduction: The aim of this study was to identify the current practices and perceptions of family physicians regarding health promotion, disease prevention including periodic screening and health checks in Eastern Mediterranean Region. Methods: A multi-country cross-sectional study was conducted in six countries of EMR, from September 2014 to March 2015. Family Physicians who were currently practicing in different countries of EMR were invited to participate in the study through email. A pre-tested structured questionnaire was used for data collection. Data was entered and analyzed on SPSS 19 and logistic regression analysis was performed. Results: A total of 100 physicians data was included in the final analysis. The majority were female physicians (76%): 63% were 25 to 35 years of age. Approximately 53% of Family physicians always recommend periodic screening and health checks to their patients. The common screening question asked to patients in medical history was related to their blood pressure (86%). Almost all (99%) of the Family physicians believe they should conduct periodic health checks. Those who had postgraduate training in Family Medicine (OR: 0.5; 95% CI: 0.39-1.67) and attended CME sessions regularly (OR: 0.11; 95% CI: 0.01-0.93), are more likely to recommend periodic screening and health checks to their patients. Conclusion: Periodic screening and health check is an important strategy to prevent disease and maintain health. It is an underutilized practice and a great need exists for its implementation in family practice

    Positional Delta Trees to reconcile updates with read-optimized data storage

    Get PDF
    We investigate techniques that marry the high readonly analytical query performance of compressed, replicated column storage (“read-optimized” databases) with the ability to handle a high-throughput update workload. Today’s large RAM sizes and the growing gap between sequential vs. random IO disk throughput, bring this once elusive goal in reach, as it has become possible to buffer enough updates in memory to allow background migration of these updates to disk, where efficient sequential IO is amortized among many updates. Our key goal is that read-only queries always see the latest database state, yet are not (significantly) slowed down by the update processing. To this end, we propose the Positional Delta Tree (PDT), that is designed to minimize the overhead of on-the-fly merging of differential updates into (index) scans on stale disk-based data. We describe the PDT data structure and its basic operations (lookup, insert, delete, modify) and provide an in-detail study of their performance. Further, we propose a storage architecture called Replicated Mirrors, that replicates tables in multiple orders, storing each table copy mirrored in both column- and row-wise data formats, and uses PDTs to handle updates. Experiments in the MonetDB/X100 system show that this integrated architecture is able to achieve our main goals

    MonetDB/X100 - A DBMS in the CPU cache

    Get PDF
    X100 is a new execution engine for the MonetDB system, that improves execution speed and overcomes its main memory limitation. It introduces t
    • …
    corecore