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Abstract— We investigate techniques that marry the high read-
only analytical query performance of compressed, replicated
column storage (“read-optimized” databases) with the ability to
handle a high-throughput update workload. Today’s large RAM
sizes and the growing gap between sequential vs. random IO
disk throughput, bring this once elusive goal in reach, as ithas
become possible to buffer enough updates in memory to allow
background migration of these updates to disk, where efficient
sequential IO is amortized among many updates. Our key goal
is that read-only queries always see the latest database state,
yet are not (significantly) slowed down by the update processing.
To this end, we propose thePositional Delta Tree (PDT), that
is designed to minimize the overhead of on-the-fly merging of
differential updates into (index) scans on stale disk-based data.
We describe the PDT data structure and its basic operations
(lookup, insert, delete, modify) and provide an in-detail study
of their performance. Further, we propose a storage architecture
called Replicated Mirrors, that replicates tables in multiple orders,
storing each table copy mirrored in both column- and row-wise
data formats, and uses PDTs to handle updates. Experiments in
the MonetDB/X100 system show that this integrated architecture
is able to achieve our main goals.

I. I NTRODUCTION

Read-optimized databases, that use columnar data storage
(DSM [5]) in combination with compression and replication
have recently re-gained commercial and research momen-
tum [14], [2], especially for performance intensive read-mostly
application areas such as data warehousing, as they can
significantly reduce the cost of disk I/O with respect to row-
clustered disk storage (NSM or PAX [1]), at the price of more
expensive updates.

At the same time, application areas like data warehousing
experience user pressure to shorten or even fully eliminatedata
refresh times, raising the golden question whether it is possible
after all to marry the benefits of read-optimized databases with
the update throughput of row-stores.

The C-Store and Vertica systems try to address this question
by splitting their architecture in a read-store and a write-
store, where changes in the write-store are periodically merged
into the read-store [14]. In this paper, however, we focus on
solutions where read-queries always see on the most recent
state of the database.

Read-Optimized Databases.Columnar storage allows scan
queries that need a subset of all columns to access data blocks
that only contain useful data, reducing disk I/O requirements
for a given query with respect to row storage. The disadvantage

of columnar storage is that each update or delete to anC-
column table leads toC disk block writes, as opposed to just
one in case of NSM and PAX.

Modern column stores often keep tuples in some user-
specified order, which helps to restrict scans also in the
horizontal dimension, if the predicate is a range condition
along this order (i.e. allows to scan only those blocks from
a column that are relevant for the range predicate). The flip-
side of the coin of maintaining a particular order is that bulk
insert operations, typical in data warehousing workloads,are
no longer localized at the end of each table, but may cause
scattered disk I/O over the entire table.

Data compression, when combined with columnar storage or
PAX, benefits from subsequent data items being of the same
type and belonging to the same value distribution, allowing
for faster and more effective data compression than in row-
storage [17], [14], and hence further reduces disk I/O. The
disadvantage in case of updates is that a full disk block
needs to be read, de-compressed, updated and re-compressed
(introducing significant CPU cost), before being written back
to disk. Extra complications occur if the updated data no
longer fits its original location.

Adding replication to this picture allows to maintain table
replicas in R different orders, which can strongly increase
the query percentage in a given workload that benefits from
clustered range scans, reducing disk I/O for read queries. The
obvious disadvantage of replication during updates is thatthe
amount of update I/O also increases by a factorR.

Differential Updates. We argue that the key to providing good
update performance in read-optimized databases is to avoidup-
dating the read-optimized (columnar, compressed, replicated)
data structures immediately. Rather, updates should be batched
into a RAM-baseddifferential structure. This structure grows
over time until a background checkpointing process migrates
(parts of) it to disk, combining the effects of many updates in
each single bulk disk write, thus amortizing I/O maintenance
cost. Durability in such an approach is achieved by directly
logging updates in a disk-based Write Ahead Log (WAL),
which extends sequentially.

The idea of using differential structures is quite old. Apart
from the original proposal of differential files [12], a well-
developed data structure exploiting this idea is the Log Struc-
tured Merge tree (LSMT) [9]. The LSMT is actually a stack
of trees, that differ in size by a fixed ratio, where each tree is a
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(insert,delete) delta on top of the underlying data. The topmost,
smallest, tree is typically cached in RAM, whereas the layout
of the other read-only, disk-resident, trees is optimized for
sequential access (100% full disk blocks of a large size). While
the LSMT offers enhanced throughput with respect to insert-
and delete-intensive workloads, the increased lookup and range
scan cost (in the worst case, all trees have to be checked,
leading to at least one disk I/O per tree) has held back its
acceptance as a general-purpose indexing structure.

PDT. Providing transactional consistency without this affect-
ing the speed advantage of read-optimized databases, is the
key goal of this work.

The previously proposed differential files and LSMT store
differences as(key, type, kind) information. Applying deltas
then implies using a merge-join algorithm on keyvalues
(in case of composite key being the conjunction of equality
tests on all corresponding key columns), which may make
the normal Scan operation considerably more CPU intensive.
We call this operator theMergeScan, as it provides the
functionality of a (range) Scan operator, but has the additional
task of merging in deltas. Note that such classical value-
based differential delta merging has the disadvantage in DSM
systems that it forces to scan along allkey columns inall
queries, which can significantly increase their disk IO needs,
and impact performance.

In this paper, we contribute a new data structure called the
Positional Delta Tree (PDT). The PDT is a tree that contains
the differential updates withtype ∈{insert,delete,modify}.
The PDT is designed to make merging in differential updates
extremely fast by pre-computing the tuplepositions where
deltas have to be applied. Therefore, instead of performinga
value-based MergeScan on tree key, the range scan can simply
count down to the next position where a difference has to be
applied, and apply it blindly when the scan cursor arrives there.

Thus, the key advantages of the PDT over value-based
merging are (i) PDT-based MergeScan is less CPU intensive
than value-based MergeScan, and (ii) queries need to perform
less IO as the key columns are not strictly needed.

Unlike the LSMT, the PDT is primarily designed for use in
RAM. The lowest level in the data hierarchy is not a PDT, but
read-optimized disk storage (i.e. columnar, compressed and/or
replicated data storage). Search operations in the PDT involve
at most searching three PDTs (of which the top-most two
are so small that they should fit in the L1 CPU cache). If
PDT search in RAM is unsuccessful, it escalates to an access
method supported by the disk storage layer (depending on
what is used).

Replicated Mirrors. Besides the PDT data structure, a second
contribution of this paper is to outline a physical databasede-
sign architecture for high update throughput data warehouses,
based on Fractured Mirrors. The original Fractured Mirrors
proposal [10] suggested as future work the use of a differential
technique to handle updates. We propose PDTs as exactly this
contribution, and combine it a with indexing and replication.

Replicated Mirrorsstore each relational table replica twice,
in a columnar-representation and a row-wise representation,
which end up on different sets of disks, thus obviating the need

for additional RAID protection. Additionally, each relational
table may be replicated multiple times, each using a different
order criterion. At least one replica contains all columns,other
replicas may only contain a subset of all columns. Each replica
has asparse indexon its order columns, that can be used
to perform range scans on both the column- and row-wise
mirrors. Updates to both mirrors are amortized using the PDT.
Read-mostly OLAP queries can exploit the columnar layout
using MergeScan to retrieve (ranges of) columns with the
latest updates from the PDT merged in, while a simultaneous
workload of small OLTP queries can exploit the row-wise
mirror.

We evaluate our proposed Replicated Mirror set-up in the
MonetDB/X100 vectorized database engine, developed as a
prototype at CWI [2], and show that it can fulfill our goal of
unaffected high read-only performance combined with update
throughput that competes with a row-store.

Outline. This paper is organized as follows. In Section II,
we describe in detail the PDT data structure, and outline its
basic operations in Section III. In Section IV, we then give a
detailed definition of the proposed Replicated Mirrors scheme
that combines PAX-DSM mirroring with sparse indices and
PDTs, and in Section V provide a performance model that
motivates its efficiency. In Section VI we describe related work
before concluding in Section VII.

II. POSITIONAL DIFFERENTIAL UPDATES

A. Terminology

A column is a sequence of relational attribute values. A
table, T , is a collection of related columns, all of equal length.
A tuple, or record is a single row withinT . Tuples should be
aligned over columns, i.e., the attribute values that make up
a tuple should be retrievable using a single positional index
value, for all the columns that make up a table. This index we
call the row-id, or RID, of a tuple.

Tuples in a table can be ordered along a subset of attributes,
S, and can have a possibly distinct set of key attributes,K,
that uniquely identify a single tuple. A subset of attributes that
defines a sort order while also being a key of a table we call
SK.

An update on a table is one ofinsert, delete, andmodify. An
insert(T, t, i) adds a full tuplet to tableT , at RID i, thereby
incrementing the RIDs of existing tuples at RIDsi · · ·N by
one. A delete(T, i) deletes the full tuple at RIDi from table
T , thereby decrementing the RIDs of existing tuples at RIDs
i · · ·N by one. Amodify(T, i, j, v) changes attributej of an
existing tuple at RIDi to valuev.

Assuming we maintain updates against a table in a differen-
tial structure∆, we can define the following table hierarchy:

UpdateTable = (∆, StableTable, timestamp) (1)

StableTable = DiskTable|UpdateTable (2)

where a DiskTable is an immutable, disk-resident,
read-optimized (e.g. columnar, compressed) table, and
UpdateTable is an immutableStableTable, with differential
updates against it stored in∆. The timestamp of an



UpdateTable represents the time it was instantiated, starting
out with an empty differential file,∆ ← ∅. Once an
UpdateTable is used as aStableTable to create a new
UpdateTable, it becomes immutable, and future updates
against the table should go into the differential structureof
the newly createdUpdateTable. This leads to a hierarchy
with a DiskTable at the bottom, and an arbitrary number
of differential structures stacked on top of it, where only the
topmost differential structure can be modified.

We definestable-id, or SID, to be the position of a tuple
within the aStableTable. The row-id, or RID, is the position
of a tuple within the table image produced by applying all
differential updates.

B. Value-based Deltas

To be able to merge differential updates into a scan stream
efficiently, the updates themselves can be kept in the sort order
of the table they apply to. If that is the case, interleaving
the differential updates into the scan stream boils down to a
two-way merge with at most linear complexity. Maintaining
differential updates ordered by their sort order attributevalues
has been assumed in all previous work [12], [8], [10]. Storing
both the main table as well as the deltas in order, is usually
done using tree data structures, such as the aforementioned
LSMT [9]. We refer to the idea of identifying and maintaining
deltas using (ordered) attribute values byValue-based Deltas,
and the concept of using a tree to store these as aValue-based
Delta Trees(VDT).

Note that, in case the sort order attributes of interest,S, are
not a key forT , both the table and the differential file should
be maintained ordered onSK, an extension of the sort order
attributes that make it a key. Although such a maintenance
of updates is easy, the price has to be paid during merging
of the updates, as we need to locate the exact tuple each
update applies to by comparing its values onSK to those
of the tuples in the original table, which can be a costly
process, in terms of CPU overhead, even when assuming that
both streams are sorted. Furthermore, in case we are dealing
with DSM, we would always need to scan along theSK
attributes to be able to identify updated tuples, even if the
query itself does not require access to these columns. In case
the sort order is not a key by itself, something not uncommon
in analytical scenarios, especially if tables are replicated in
different sort orders, this boils down to scanning along at least
two columns. For tables without a key, value-based differential
updates require addition of an artificial key, like a tuple-id
(TID). Clearly for DSM, value based differential updates do
not only induce CPU overhead, but disk I/O overhead as well.
As these overheads violate our starting requirement that read-
only performance should not be compromised, we investigated
different solutions.

C. Positional Deltas

An alternative way to maintain differential updates, is
by means ofposition rather than by value. This has the
advantage that updates can be merged efficiently, as it is
trivial to compute the gap till the next update, which allows

sequences in the original data that do not have any updates
to be processed without any additional CPU overhead. Tuple
position, however, is a dynamic concept, as soon as tuples can
be inserted and deleted at arbitrary locations. To be able to
maintain differential updates by means of a dynamic position,
we introduce thePositional Delta Tree(PDT).

The PDT resembles aB+-Tree, that stores differential
information of the form(SID, type, value), where SID is the
location within the underlyingStableTable where the update
applies to,type is one of insert/delete/modify, and thevalue
associated with the update. If the PDT is associated with a
table,value is a a tuple, if it is associated with a single column,
value is atomic. Note that this also stores a value with tuple
deletions. We will elaborate on these issues later.

The PDT can be searched by either SID, RID, or (SID,
RID), to locate existing updates or add new ones. As RIDs
are changing continuously all over the table, materializing
and maintaining them is unacceptable. Instead of materializing
RIDs, we defineRID = SID + δ, with δ being determined
by the number of preceding inserts and deletes, and defined
as:

Definition 1: During a sequential scan of a table, or, alter-
natively, a sequential walk of the leaves of a PDT,δ is defined
as the the total number of newly inserted tuples, minus the
number of deleted tuples, up till the scan position.

Each insert contributes an increment ofδ by one, and each
delete contributes a decrement ofδ by one. Modifications do
not have impact on the value ofδ.

An example PDT can be found in Figure 1. Internal nodes
maintainF child pointers, whereF is the fan-out of the tree,
and two aligned lists of lengthF −1, the first of which stores
SIDs, and the second storingδ values:

PDT_internal_node {
sid[F],
delta[F],
child[F],
parent

}

The delta fielddelta[i] represents the relative number of
inserts and deletes in the subtree rooted at childdelta[i].
We maintain delta on a per-subtree basis to avoid high main-
tenance cost (i.e. when adding an insert or delete we only
need to modify delta fields along the path from the leaf to
the parent). When searching the tree on RID, or (SID, RID),
we therefore need to compute the cumulative sum of deltas,
until we find thatsid[i] +

∑
∀j∈lookup(i) delta[j] is bigger

than the RID we are searching for, in which case we take the
branch to childi, as illustrated in Algorithm 1.

Leaf nodes of the PDT simply store update triples ordered
on (SID, RID). in a structure like:

PDT_leaf {
sid[F],
type[F],
value[F],
parent,
next
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Fig. 1. Example of the Positional Delta Tree (PDT), and its use in creating a virtual UpdateTable on top of an unmodified StableTable

}

Per-Tuple PDTs. In this example, the PDT leaf nodes contain
a simple value from a single column; while in a typical
database implementation its stores delta information for entire
tuples, such that thevalue field would then be a pointer or
offset into some tuple-space or -heap, as illustrated in Figure 2.
As for storage overhead in that case, the important aspects are
the size of thevalue, sid, andtype; as even with moderately
low F these fields dominate. A typical implementation, the
sid could be a 48-bits integer field. Thetype takes three basic
values (insert,delete,modify), for which just 2 bits are required.
In a tuple-based PDT, however, for modify we also need the
information which column was updated. This could be handled
by a 16-bit type, that uses 2 values for insert/delete and
leaves all other values to indicate a modification of a certain
column (identifying one out of maximum 65534 columns).
This sets the PDT overhead per update to 12 bytes, assuming
a 32-bitsvalue (offset). Note that when a table is replicated
in multiple orders, a separate PDT must be kept for each
replica. However, the updated values in the various replicas are
identical, so it makes sense to share the tuple-space between
replicas. This way, PDT RAM consumption scales sublinearly
with replication degree.

Figure 2 shows in detail how various table replicas, for
each of which a separate PDT is maintained, can share a
single value-space. The value-space is an memory-resident
data structure that stores, separately, inserted rows (a value for
all columns) and modifications (a value for one column only).
This split insert/modification storage minimizes PDT memory
utilization, since the PDT leaves that point to an insert canuse
a single offset into the value-space that leads to all inserted
values, while modifications on a single column store only a
single value. The use-counts maintained for inserts and for
each updated column are for garbage collection (as will be
discussed in the Checkpointing section).

D. Basic Properties and Algorithms.

To be able to maintain the tree, each tuple, being it a stable
one, a deleted one, or even a newly inserted one, should have a

replica2
replica3

replica1

PDT
insert−space update−space

value−space

col1
col2

...
colC
use−
count

Fig. 2. Saving PDT space across replicas

SID. Each tuple furthermore automatically has a RID, defined
as RID = SID + δ. This means that even deleted tuples
stay around as ghost records, sharing the RID of their direct
successor, as a deletion decrements the cumulativeδ by one.
Newly inserted tuples are assigned the same SID as the tuple
before(according to table sort order) which they are inserted.
Clearly, neither SID nor RID are guaranteed to be unique
within a PDT. Their concatenation however, is a unique per-
tuple key.

Theorem 1:The concatenation of SID and RID,
(SID, RID) is a unique key.

Proof: We prove by contradiction. Assume we have two
tuples with equal SID. The first of these is always a newly
inserted tuple, which incrementsδ by one. Given thatRID =
SID + δ, the second tuple can never have an equal RID.
Next, assume we have two tuples with equal RID. The first of
these is always a deleted tuple, which decrementsδ by one.
The second tuple can never have an equal SID, asSID =
RID − δ.

Corollary 2: If updates within a PDT are ordered on (SID,
RID), they are also ordered on SID and on RID.

Corollary 3: Within a PDT, a chain ofN updates with
equal SID is always a sequence ofN − 1 inserts, followed
by either another insert, or a modification or deletion of an
underlying stable tuple.



Algorithm 1 FindLeafByRid(rid)
Given a RID, finds the rightmost leaf containing updates on
given rid. Versions that find the leftmost leaf, or search by
SID or (SID, RID) are omitted

1: node = root node
2: δ = 0
3: while is leaf(node) 6= true do
4: for i = 0 to node count(node) do
5: δ = δ + node.delta[i]
6: if rid < node.sids[i] + δ then
7: δ = δ − node.delta[i]
8: break from inner loop
9: end if

10: end for
11: node = node.child[i]
12: end while
13: return (node, δ)

Algorithm 2 AddModify(PDT, rid, newvalue)
Finds the rightmost leaf containing updates on a givenrid.
Within that leaf, we either add a new modification triplet at
index pos, or modify in-place.

1: (leaf, δ) = FindLeafByRid(rid)
2: (pos, δ) = SearchLeafForRid(leaf, rid, δ)
3: while leaf.sid[pos] + δ ≡ rid and leaf.type[pos] ≡ −1

do {Skip deletes with conflicting RID}
4: pos = pos + 1
5: δ = δ − 1
6: end while
7: if leaf.sid[pos] + δ ≡ rid then {In-place update}
8: leaf.value[pos] = new value
9: else{add new update triplet to leaf}

10: ShiftLeafEntries(leaf, pos, 1)
11: leaf.type[pos] = 0
12: leaf.sid[pos] = RID − δ
13: leaf.value[pos] = new value
14: end if

Corollary 4: Within a PDT, a chain ofN updates with
equal RID is always a sequence ofN − 1 deletions, followed
by either another deletion, or a modification of the subsequent
underlying stable tuple, or a newly inserted tuple.

Adding a new modification or deletion update to a PDT
only requires a RID, as deleted ghost records are not present
in the final table image, which is also the image seen by the
modify and delete operators. We only need to make sure that
the new update goes to the end of an update chain that conflicts
on RID, within the PDT. If the final update of such a chain
is an existing insert or modify, we need to either modify or
delete that update in-place, within the PDT. The procedures
for adding a new modification or deletion update to a PDT
are outlined in Algorithms 2 and 3, respectively. Tree specific
details, like splitting full leaves and jumping from one leaf to
its successor, are left out for brevity.

For insert updates, inserting by RID only is not sufficient, as
we can not determine where in the PDT to store the insert, with

Algorithm 3 AddDelete(PDT, rid, oldvalue)
Finds the rightmost leaf containing updates on a givenrid.
Within that leaf, we either add a new deletion triplet atpos,
or delete in-place.

1: (leaf, δ) = FindLeafByRid(rid)
2: (pos, δ) = SearchLeafForRid(leaf, rid, δ)
3: while leaf.sid[pos] + δ ≡ rid and leaf.type[pos] ≡ −1

do {Skip deletes with conflicting RID}
4: pos = pos + 1
5: δ = δ − 1
6: end while
7: if leaf.sid[pos] + δ ≡ rid then {In-place update}
8: if leaf.type[pos] ≡ 1 then {Delete existing insert}
9: ShifLeafEntries(leaf, pos,−1)

10: else{Change existing modify to delete}
11: leaf.type[pos] = −1
12: end if
13: else{add new update triplet to leaf}
14: ShiftLeafEntries(leaf, pos, 1)
15: leaf.type[pos] = −1
16: leaf.sid[pos] = RID − δ
17: leaf.value[pos] = old value
18: end if{Decrement deltas along the path from leaf to root

by 1}
19: IncrementNodeDeltas(leaf,−1)

Algorithm 4 AddInsert(PDT, sid, rid, newvalue)
Finds the leaf where updates on(sid, rid) should go. Within
that leaf, we add a new insert triplet at indexpos.

1: (leaf, δ) = FindLeafBySidRid(sid, rid)
2: while leaf.sid[pos] < sid or leaf.sid[pos] + δ < rid do
{Skip updates with lower (SID, RID)}

3: δ = δ + leaf.type[pos]
4: pos = pos + 1
5: end while{Insert update triplet in leaf}
6: ShiftLeafEntries(leaf, pos, 1)
7: leaf.type[pos] = 1
8: leaf.sid[pos] = RID − δ
9: leaf.value[pos] = new value {Increment deltas along

the path from leaf to root by 1}
10: IncrementNodeDeltas(leaf, 1)

respect to deleted ghost records. Inserting by SID only does
not work as well, as we can not determine where to store it
with respect to conflicting inserts on the same SID. As we want
such conflicting insert chains to be stored according to the
underlying tables value based sort order, we need to translate
from the values on attributesSK to a unique (SID, RID)
combination, identifying the existing tuple before which the
newly inserted tuple should go. How we achieve this mapping
is discussed below. The fact that we maintain values for deleted
tuples is related. For now, assuming we have (SID, RID) to
insert at, we can add an insert update using Algorithm 4.

To keep PDT updates ordered on both (SID, RID) and on
their values on the underlying tables sort order attributes, SK,
both concepts should be correlated. For modifications and



Algorithm 5 SKtoSidRid(tuple[SK])
This routine takes a partial tuple of sort key attribute values
as input, and returns the position where these values belong
in terms of (SID, RID) ordering.

1: sid = FindSID(tuple[SK]) {By means of traditional
search}

2: (ridlo, ridhi) = GetRidRange

deletions there are no dangers of violating this correlation:
deletions triplets within a PDT always refer to an underlying
stable tuple, which is assumed to adhere to ordering onSK,
and modifications can only occur on attributes that are not
in SK (i.e. a modification of anSK attribute would result
in a deletion plus an insertion of the modified tuple, which
changes its position). Only inserts need special attentionto
retain an exact ordering onSK. This can be achieved by first
locating the SID of the tuple in the stable table before which
the new tuple should go. With this SID we search the PDT for
any updates on that SID. As all updates in the PDT contain
a value, even deletions, we can search for RID of the tuple
before which to insert.

Correlating (SID, RID) ordering andSK value ordering
is important for random tuple lookups. For example, when
performing an index scan that involves range predicates, we
need to be able to translate the predicate values to (SID, RID),
so that we can produce the correct range of tuples, including
tuples introduced by PDT inserts and leaving out all that
got deleted. The procedure to translateSK values to (SID,
RID), is also used for determining the exact position of insert
updates, and is listed in Algorithm 5.

1) Complexity: Although it depends heavily on the work-
load, we could come up with at least average case complexity
under a uniform load (it’s similar to B-tree, except that we
cannot binary search within internal nodes, due to cumulative
delta summation. We do have a small fan-out in general
though). Space complexity should not be hard either.

III. D ATABASE OPERATORS

A. MergeScan

In systems that use block-oriented processing, where a Scan
does not produce a single next tuple, but a block orvector
of V next tuples, the check to see whether there is a change
within the nextV tuples can be done once per block; reducing
the checking overhead. Since the percentage of updates tuples
tends to be very low (<1%) this will often be the case, such
that the more expensive merging code path can be avoided in
the common case.

A brief outline of the optimized merging algorithm is in
Algorithm 6.

The idea here is thatgap represents the distance in position
till the next insert or delete,not modify. If the gap is large, we
merge patch these gap tuples.merge patch first checks
whether there are modifies for this column within distance
gap. If not, we return a hard data pointer. If there are, we
first memcpy input data, and then patch modifications. If
in place is true, input data is already in private buffer

Algorithm 6 SKtoSidRid(tuple[SK])
This routine takes a partial tuple of sort key attribute values
as input, and returns the position where these values belong
in terms of (SID, RID) ordering.

1: for each columnc
2: res[c] = fetch(next V tuples)
3:

4: if (gap > V ) // fast code
5: for each columnc
6: pdt[c].merge patch(res[c],V,in place)
7: gap -= V
8: else
9: for each columnc // slow code

10: pdt[c].mini merge(res[c],V )
11: gap = check ins and del(key col pdt)

(i.e. decompressed) and patching can be done in place. The
mini merge has to deal with insert/delete, and thus copies
always. It tries to exit as soon as it finds that the gap
till the next insert/delete is bigger than 63 (to avoid huge
fragmentation of vectors).

B. Lookup

A lookup query that selects tuples based on some predicate
is handled in the general case by a MergeScan followed by a
ScanSelect. However, equality lookup to theSK attributes can
be much faster (sub-linear) by taking advantage of indexing
structures. In the Replicated Mirrors implementation in Mon-
etDB/X100, for instance, we use a sparse index on theSK
attributes that identifies a single 64KB PAX block where such
tuples are found (within the block, binary search lookup can
be used). Recall that both the read-optimized storage, as well
as the indices on it are stale (i.e. the differences after thelast
checkpoint are in the PDT). A lookup in the index thus yields
(if successful) the stable ID (SID).

The second step is to use the SID to access the PDT. Note
that multiple leaf nodes in the PDT may have the same SID,
so looking up a SID also involves a range traversal among
sibling leaves. The thus found changes should be analyzed to
see whether or not a tuple exists: initial success in lookup on
the stable data may be overruled by a corresponding delete in
the PDT, while failure to find a tuple in the stable image may
be overturned by the presence of an insertion.

In case there are multiple, stacked PDTs, the PDT lookup
process should be repeated for all PDTs starting at the lowest
one.

C. Insert

Insert queries involve a table name and a list of attribute
values that represents the tuple to be inserted into that table.
They are easy in case there is no sort order on the table
being updated, or, if the sort order is some auto-incremented
tuple ID. In this case, the newly inserted tuple can be simply
appended at the end of the table.

In case there is a tableSK order, the first step is to
determine the insert position (SID) in the StableTable; as
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described above. The second step is to insert the new tuple
in the PDT (the top-most PDT, if there is a stack of PDTs).
Note that a PDT insert starts as a PDT lookup, until the correct
leaf node is found/created for the insert. Along the way, the
delta values in the traversed internal nodes are incremented by
one.

D. Delete

Delete queries involve some predicate that identifies the
tuples to be deleted. For each tuple, if its a (SID,RID) is
present in the PDT as an insert or a modify, it is removed
from the PDT. If the (SID,RID) is not present as an insert in
the PDT, it is inserted as a delete in the PDT.

E. Modify

Modification queries also rely on a predicate that describes
tuples to be modified. However, modifications involve only a
subset of the attributes participating in a table. If a modified
attribute is present as an insert or modification in the PDT,
we can simply modify the value in the PDT (note that in case
of one PDT per tuple, this modifies the PDTs for all replicas
at once). Otherwise, a new modification entry is added to the
PDT.

Modifications are more complicated in case aSK attribute
is being changed, as this means the tuple will change its
position. Such modifications therefore have to be seen as a
deleted followed by an insert.

IV. REPLICATED M IRRORS

We now discuss the proposed Replicated Mirroring scheme,
depicted in Figure 3.

Mirroring. The gist of the original Fractured Mirror [10]
paper is to store data both column- and row-wise, such that
the query optimizer can choose which representation to use for
which query (and even mix representations in the same query).
The observation that database installations often alreadyuse
physical mirroring in the form of RAID, is exploited to argue
that recovery could exploit the fact that data is mirrored logi-
cally, thus making additional physical mirroring unnecessary,
such that physical storage cost is not increased.

Fractured Mirrors divide (”fracture”) the columnar and
row-wise mirrors across all disks, to spread out the load.
The expected load to the column- and row-wise is different:
column-wise data is accessed only sequentially in large chunks
that consist of multiple disk blocks (we use a 2MB chunk
size), whereas the row-wise data is accessed using random
read IO (at a disk block granularity of 64KB) for handling
OLTP queries, yet also sustains a low-intensity sequential
checkpointing load at the chunk granularity.

In our MonetDB/X100 implementation, the row-wise mirror
is stored using PAX [1], not NSM. Like NSM, PAX stores all
data of a single row in the same disk block. However, inside
the disk block, column values are laid out consecutively. This
storage layout better fits the column-oriented MonetDB/X100
storage access methods and allows the Scan operator to
retrieve vectors of data (small columnar slices that contain
data of around 100-100 tuples) used in itsvectorizedquery
processing model, without any CPU investment to change the
representation. Also, PAX allows to apply column-wise com-
pression techniques. The Replicated Mirrors proposal works
independent of the particular row-wise storage format used
(e.g. NSM, PAX).

Indexing. In the Replicated Mirrors approach, each table is
assumed to be stored in a certain order. The tuple order in
each column- and row-wise mirror is identical among them
and indexed by ashared sparse index, that can be used to
access both mirrors.

The sparse memory-resident B+-tree index contains one key
per row-wise block. The leaves store a value, a block number
(pointing into the row-wise mirror), as well as a tuple number,
that is a SID (StableID). As it stores around 20 bytes of
data per 64KB NSM/PAX block, the size overhead is around
1/2700; making it possible to cache all sparse indices in RAM.
Random-lookup single-record OLTP queries access the sparse
index to get a block number. After fetching the NSM (or PAX)
block, the individual tuple (and thus SID) is found using binary
search on the ordered columns.

The SID can also be used to identify chunks in the DSM
partitions. Given their large size (and thus low number) as
well as their static nature (chunks are only updated during a
checkpoint), we do not use a B-tree for this this sparse DSM
index. Rather, a simple sorted array kept for each DSM column
holds its start SID; and binary search is is used to find chunks
by SID. Apart from the side, the simple array also holds the
minimum and maximum value of each chunk. These minimum
and maximum values can be used to limit the chunks read by
unclustered scans, in case a range-selection query is being
processed. This technique is especially effective in case of
correlated columns (such as dates), were a table stored on one
column, is also (almost) ordered on another column. In such
cases, range selections on that other column can prune avoid
processing many chunks.

Replicating. Our proposal of Replicated Mirrors re-uses the
idea of a column- and row-wise mirror of table, and combines
it with table replication in multiple orders. Only one replica
(the “’master”) is required to store all columns, other replicas
may only contain a subset of the table columns. The concept



of multiple replicas roughly coincides with that of clustered
indices, however it recognizes that read-optimized databases
better store such indices in their native memory-tight update-
unfriendly compressed and columnar forms.

Each replica is sorted on a different set of order keys,
and each replica comes with its own row- and column-wise
mirrors, its sparse index. Additionally, each replica maintains a
PDT data structure for each column (once, as PDTs are shared
between the row- and column-wise mirrors).

Processing an OLTP single-row update proceeds as follows:
(i) use the order keys to lookup up the relevant PAX block (ii)
fetch this PAX block using one 64KB read I/O (iii) look up
the tuple inside the block with binary search, so we get its SID
(iii) update the PDTs of the affected columns in this replica.
If there are other table replicas that have affected columns,
these also need to be processed by repeating these steps. Note
that there is only one single-block read IO on the critical path.
If there areR replicas;R − 1 subsequent IOs are needed to
establish the SIDs of the affected tuple in these replicas (these
IOs can be processed in parallel, though).

Checkpointing. In the very simplest solution, a checkpoint is
a Scan query that materializes all tuples in a new table copy.
Note that Replicated Mirrors keeps multiple replicas of the
same table (in different orders) and each replica itself consist
of a NSM (/PAX) and DSM table mirror. Each replica keeps
a separate PDT, but all PDTs of the same table reference data
in a single value-space (as illustrated in Figure 2). Therefore,
checkpointing a table, implies checkpointing all its replicas,
each of which consist of two mirrors. After checkpointing
both mirrors, the PDT can be emptied fully (all data in it
de-allocated).

However, in the value-space, data can not yet be deallocated,
since other replicas may not have finished checkpointing,
Therefore, reference counts should be added on the values
in the value-space: only when the last replica that references
an updated value is checkpointed, it can be cleared out. Note
that it is reasonable to assume a limited number of replica’s,
such that these counters can be fitted into small (e.g. 8-bit)
integers; therefore, these reference counts do not introduce
much overhead.

Within a single replica, it may also be desirable to perform a
partial checkpoint, that e.g. only checkpoints a single column,
or even only a subset of the disk blocks (or chunks) of the
column. The idea behind partial checkpoints is to optimize
the balance of PDT RAM reduction with checkpointing I/O.
However, if an insert (or delete) is checkpointed already to
one column, but not to another column, thedelta field in
the internal nodes of the PDT that tells how much the RID
and SID differ at that point, would need to be different for
both columns. Therefore, partial checkpointing is only possible
if a separate PDT is kept for each column (as opposed to
one per tuple), which implies additional RAM consumption
in proportion to the number of columns, due to PDT node
storage overhead. In this study, we have not investigated partial
checkpointing in depth, and kept it out of scope for our
performance evaluation.

Snapshot Isolation.In the MonetDB/X100 system, we chose
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to implement transactions using snapshot isolation and opti-
mistic concurrency control. This choice aligns well with the
overall goal of adding transactional facility to the system
without slowing down read-only query performance, as in
snapshot isolation reads do not have to be locked.

The Log Structured Merge (LSMT) Tree [9] principle of
using a stack of trees can also used in the PDT, to provide
cheap snapshot isolation. A very small (L1 cache sized)Write-
PDT is the one that gets updated by committing update
queries. This small data structure can be copied in a quick
memory copy operation, and is tied to a specific database snap-
shot. A second-tier largerRead-PDTis shared by all queries
and contains all remaining changes. Update transactions use
an additional top-tierTrans-PDT, that starts empty, and in
which they insert their own (uncommitted) changes. If the
transaction commits, the changes in the Trans-PDT are merged
into a copy of the Write-PDT, that then becomes the new
master Write-PDT seen by incoming queries. This mechanism
provides snapshot isolation while practically avoiding any
latching/checking overhead during query processing.

As the Write-PDT keeps growing as more transactions
commit, its size will start to grow significant (outgrowing
the CPU cache), and isolation cost (due to memory copying)
will become noticeable. Therefore, the master Read-PDT is
replaced from time to time by a new copy which incorporates
all changes in the Write-PDT (which is then emptied). The
current simple solution for doing so is to scan the leaves of
the Write-PDT and apply all changes to a copy of the Read-
PDT, which becomes the new master afterwards.

Recent analysis of Snapshot Isolation anomalies with re-
spect to Serializability [6] has provided a simple and cost-
effective method of concurrency control in snapshot isolated
databases systems to guarantee serializability [3]. This idea
can also be applied in our Replicated Mirrors approach. The
idea is to keep for each transactionT two initially false
booleansT.in andT.out, and abortT as soon as both booleans
become true. The variables are maintained as follows: if (1)T
reads data modified by an overlapping transactionS, we set
T.out = S.in = true, and if (2) T modifies data read by an
overlappingS we setT.in = S.out = true. To implement
(1), each time a new disk chunk is read, we should check the
PDTs of all overlapping transactions. As chunks consist of



millions of tuples, such checks will not affect the performance
large scan queries that ready multiple chunks, as they are well
amortized. To check (2), we need to keep an administration
table that for each chunk read inserts a SID ranges. Update
queries need to check this table to detect conflicts.

V. COMPARATIVE PERFORMANCEMODEL

We now provide a cost model to better understand the
quantitative properties of Replicated Mirrors. We proceedin
two steps: first we focus on OLTP and consider the properties
of an OLTP system that processes a high throughput stream of
single-tuple updates both on a traditional (single clustered B+-
tree) row-store, and compare it with ordered row-wise storage
with a sparse index, and updates flowing through a PDT (with
checkpointing).

As a second step, we then consider the full Replicated Mir-
rors approach, where there also is a column-wise mirror and
potentially multiple replicas, that serve a concurrent stream of
OLAP queries.

The below table shows the parameters used in our model:

N number of tuples in a table
C number of columns
H update throughput (inserts/updates/deletes per sec)
W average column width (bytes)
D number of disks (an even number)
R number of table replicas (in Replicated Mirrors)
Z average compression factor (in in Replicated Mirrors)
T PDT per tuple size (uncompressed tuple width),T = RC(W + 9)
S total disk storage size (bytes)
P total RAM pool available (bytes)
B large sequential read/write single disk bandwidth (bytes/sec)
I maximum disk IOs/sec that a single disk delivers

We assume that the database system can use a RAM buffer
that is 1/100 in size with respect to disk storage:M = S/100.
This is motivated by the observed trends in cost per byte
of respectively RAM and magnetic disk, where we basically
allocate equal amounts of money to disk and RAM. In the year
of this writing (2008), on the high end, a fast Seagate Cheetah
NS SCSI drive costs $400 (S=400G,B=80M, I=300) while a
4GB stick of registered ECC DDR2 server memory also goes
for $400. On the low end, for $200 we get a SATA drive that
delivers (S=400G,B=70M, I=100) and as well as 4GB of
common DDR2 RAM.

OLTP Only. We examine the worst-case where the OLTP
load consists of updates only. In a row-store, an OLTP query
that inserts, modifies or deletes a single record is assumed to
perform just two IOs, for reading and writing the disk block
where the row is stored (i.e. the table is stored in a B+-tree
with all but the leaf level cached). However, note that writing a
disk block typically involves two writes (if some RAID levelis
used). Concurrent updates are assumed to be independent and
not to cause locking conflicts, hence throughput scales with
the amount of disks. Thus, throughput is limited toH = DI

3
queries/sec. We assume a scattered non-clustered update load,
such that even using all RAM for caching disk blocks in the
buffer pool will only eliminate 1/100 of the IOs, not improving
performance noticeably.

We now compare this with updating a single read-optimized
row-wise mirror with its sparse index and PDTs. Both the
approaches are assumed to use a Write Ahead Log (WAL) for

durability and consistency, which is not modeled here explic-
itly. Disk IO for a WAL can be turned into bulk sequential
IO by batching WAL records and delaying the reporting of
transaction commit until a large WAL block has been flushed.
WAL IO is thus not seen as a bottleneck.

By ignoring the WAL and focusing on record IO, the PDT
approach on first sight always outperforms the traditional
row-store as it performs just a single read IO for each
OLTP query, to fetch the tuple and compute its SID. The
updates are not written back to disk, rather added to the
PDT data structure. However, the PDT data structure thus
keeps growing, and therefore background checkpointing is
necessary to keep its size under control. We assume as upper
limit that we sacrifice at most half of the RAM to PDT
storage (Ppdt = P

2 = Srow

200 ). The question is thus when
checkpointing gets in balance with the time in which the
update workload fills up PDT memoryPpdt:

CheckPointT ime = MemFillT ime⇔
Srow

Bcheckpoint
= Ppdt

H∗T
⇔

Srow

Bcheckpoint
= 3Srow

200∗DI∗T
⇔

Bcheckpoint = 66DTI
where Bcheckpoint is the IO bandwidth (bytes/sec) taken

up by checkpointing traffic. The percentage of bandwidth
dedicated is thus:

CheckpointOverhead =
Bcheckpoint

DB
=

66TI

B

If we look at the TPC-H schema [15], the uncompressed
tuple width (C ∗W ) of the main LineItem table is 66 bytes.
Substituting the parameters of the high- and low-end disks then
put the checkpointing overhead at 1.5% resp. 0.6%, which is
very low.

Moreover, the above calculation assumed that the PDT
based system runs at the same throughput as the row-store
(H = DI

3 ); however, since the PDT based OLTP setup needs
to perform only a single read I/O per query, its maximum
throughput without checkpointing isDI. At that speed, check-
pointing overhead increases threefold to just 4.5% resp. 2.4%;
therefore checkpointing and PDTs can outperform the B+-tree
powered row-store by a factor close to three.

It is clear though that checkpointing efficiency decreases
with larger per-tuple PDT memory consumptionT , which de-
pends on uncompressed tuple widthCW . If we set 33% as the
maximum checkpointing overhead, we can derive a maximum
Tmax = B

200I
, which translates to records of 3KB resp. 7KB for

high- and low-end disks respectively. These bounds are quite
generous, and an undisputed trend in magnetic disk hardware
is that bandwidth (B) is improving faster than IO operations
per second (I), therefore, we may expectTmax to rise in future
years, favoring our approach.

We therefore conclude that today’s large RAM sizes, and the
trend that disk bandwidth improvements outpace IO latency
improvements, have created an opportunity for differential
update processing to be used in OLTP DBMS engines as a
viable alternative for in-place block writes.

Including the DSM mirror. If a DSM mirror is present, the



above calculations change a bit, as twice more data needs to
be checkpointed. Going back to a desire of equaling row-store
update throughput (i.e.H = DI

3 updates/sec) using Repli-
cated Mirrors, we can thus roughly double the checkpointing
overhead to 3.0% resp 1.2%. In this case, the disks are still
only 33% busy, leaving 66% (minus 3.0% resp. 1.2%) for
processing DSM queries.

In addition, if we consider areplicatedtable (e.g.R = 2),
three things change: (i) if the update rateH remains the
same atH = DI

3 , then the disks will be 66% busy, since
a random PAX lookup must be performed for each replica
(i.e. R per update query). (ii) all replicas on disk need to be
checkpointed, hence checkpointing cost increases linearly with
R. (iii) additionally, the memory consumption per updated
value per PDT leaf node is 12 bytes, assuming a per-tuple PDT
implementation (thanks to the shared value-space between
replicas, memory consumption is independent of column width
C). Therefore, increasingR leads to a memory consumption
factor of 1 + 12R

CW
. Note that such a memory consumption

increase, reduces the memory fill time, causing the need for
checkpointing to completeO(R) times faster.

These three factors combined cause increasingR to reduce
the time that disks are available to handle OLAP queries on
the DSM mirror in the orderO(R3). For example, in the
high-end scenario withR = 2, the disks will be 66% busy
handling random PAX lookups (R per query to establish the
SID of the affected tuple in each replica), and checkpointing
must run twice as fast while touching twice the volume, hence
checkpointing overhead increases four-fold to 12%, leaving
only 22% for handling queries to the DSM mirror. Therefore,
in cases where the OLAP load is higher than 22% (assuming
an update-idle system), overall performance equilibrium on a
system that sustains the above described concurrent OLTP and
OLAP load will show a slowdown in OLAP as well as OLTP
throughput.

Given the above, we argue that replication with degreeR
should be offset by scaling disk resourcesD of the system by
an equal factorR. In that case (i) the PAX random lookup load
stays equal as there areR times more disks to handle requests
concurrently and (ii)R times increased checkpointing volume
is properly offset by similarly increased disk bandwidth. What
remains is a need to also increase the available RAM size to
hold the PDT trees of the replicas. However, with an average
column widthW = 4, and assumingR = C as an upper limit
on the replication degree, PDT RAM is independent ofC and
increases at most by factor 3, while disk storage increases by
R.

A. Possible Extensions

Flash PDT. Our performance model showed that there is a
price of at least a couple of percent of read-only bandwidth to
paid up (and a limit imposed on tuple width and replication)
for the per-update memory consumption of the PDT for it to
fit in RAM. While it is left out of scope for this paper, we
argue that it may well be beneficial to introduce a layer of
PDTs in Flash memory.

The price per GB of raw Flash memory is around a factor
8 lower than RAM, thus it would be logical to make the Flash
PDTs 8 times larger than the RAM PDTs, and this would allow
to push back the checkpointing overhead by a factor 8. Note
that these lower-layer Flash PDTs would experience random
read access during search operations, sequential read access
from checkpointing and sequential read and write access from
the Apply() operator when RAM-based PDT data is migrated
to Flash. These access patterns are all highly efficient in Flash
memory, where only random writes are problematic.

We therefore view Flash PDTs as an extremely interesting
opportunity to make merging differential updates cheaper,and
to help PDTs cope with very wide or highly replicated tables.

VDT+PDT. The advantage of the PDT approach is that DSM
queries do not need to read theSK columns and CPU merging
cost is lower than a VDT approach. The advantage of the
VDT approach is that an OLTP update query only needs
a single IO, whereas the PDT approach needs to establish
the affected (SID,RID) for each replica, leading toR IOs.
By combining both approaches, low-cost CPU merging and
single IO updates can be obtained. In the so-called VDT+PDT
approach, updates are in principle handled using VDTs, but
while read-only queries read theSK columns on some replica,
as a piggybacking side effect, the (RID,SID)s of the updates
that are merged in are established, removed from the VDT and
inserted into the PDT. Therefore, most of the updates will be
in the PDTs, such that queries profit from low-cost positional
merging. However, the VDT drawback of having to read the
SK in all queries remains in VDT+PDT (avoiding to read
chunks that do not have a VDT update will not help much, as
with the large DSM chunks the probability that at least one
tuple has a VDT update remains high in many query loads).

Cooperative Checkpointing.Both DSM read-queries as well
as checkpointing perform bulk reading and writing of large
disk blocks (chunks, of e.g. 2MB). Intelligent scheduling of
concurrent requests that do not have a strict ordering, has been
shown to provide strong benefits for data warehousing work-
loads (Cooperative Scans [17]). Thus, an interesting avenue for
further exploration is to see whether checkpointing can tolerate
input chunks (to which PDT changes must be applied) to
arrive out-of-order, allowing the checkpointing operatorto be
incorporated in the Cooperative Scans framework. This would
allow checkpointing overhead to disappear as a performance
factor, as it would process DSM chunks as they are brought
in by DSM read-only queries.

VI. RELATED WORK

A number of papers investigated the differences between
the DSM and NSM. DSM storage [5] has been identified to
be beneficial not only for I/O benefits, but also for in-memory
processing [1] To get these benefits without significant changes
to the system architecture, PAX storage model [1] proposed
using DSM data inside a traditional N-ary disk page, allow-
ing good cache-performance. Multi-resolution block storage
model (MBSM) [16] investigates the physical placement of the
DSM-based data. In this approach, the good scan performance
of DSM is preserved, while the cost of tuple reconstruction



is reduced, since values of different attributes from the same
tuple are stored closer on disk than in the naive DSM im-
plementation. The fractured-mirrors approach [10] suggests
keeping two copies of data on two disks, one copy in NSM and
another in DSM. This allows using the best model depending
on the task, as well as combining both mirrors in a single query
for even better performance. However, research on handling
of updates in these papers is limited.

The idea of maintaining updates against large databases in
a differential file for efficiency reasons, was introduced by
Severance and Lohman in 1976 [12]. Copeland elaborated on
this idea in a DSM context [5]. C-Store Log-structured merge-
tree [9] defers and batches index updates to reduce index
maintenance costs in insert/delete-heavy query workloads.
Similarly, [7] proposes multi-level indexing in a warehousing
environment. C-Store [14] borrows on these ideas by propos-
ing to let updates go to a separate write-store (WS), while
queries are being ran against an immutable read-store (RS).
Updates from the WS are propagated to the RS on a temporary
basis, and are therefore not immediately visible to subsequent
queries. The original papers on fractured mirrors [10] also
proposes using a differential file to buffer updates in mem-
ory. Comparing to our work, it uses a standard value-based
approach. Also, authors do not discuss how to propagate the
changes to the mirrors, while this paper proposes a number
of optimization strategies, including partial checkpointing.
Deferring of the updates has also been proposed in other areas,
including view maintenance [4], [11] and updating inverted
lists in information retrieval applications [13].

VII. C ONCLUSIONS

This paper proposed a novel approach of handling the
updates in a database, based on two fundamental innovations.
First, merging of in-memory updates with disk-resident sta-
ble data has been significantly improved with a proposed
Positional Delta Treedata structure, that reduces the need
to perform expensive value-based checks. Secondly, storage
model based on the idea ofReplicated Mirrors allows to
have quick NSM lookups necessary for update handling, while
providing multiple DSM replicas for efficient scans. As a
result, the proposed architecture achieves the read performance
of DSM systems, only marginally impacted by the update
merging process, while at the same time providing update
facilities that can match those of standard row-based systems.
We also presented that this architecture allows efficient, possi-
bly partial, checkpointing and can provide transaction isolation
based on the snapshot isolation model and layered PDTs.
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