View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by CW!I's Institutional Repository

read-optimized data storage

Sandor Heman, Niels Nes, Marcin Zukowski, Peter Boncz
Firstname.Lastname@cwi.nl
Centrum voor Wiskunde en Informatica
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Abstract— We investigate techniques that marry the high read- of columnar storage is that each update or delete ta@an

only analytical query performance of compressed, replicad column table leads t6' disk block writes, as opposed to just
column storage (“read-optimized” databases) with the abity to one in case of NSM and PAX.

handle a high-throughput update workload. Today’s large RAM | f K | .
sizes and the growing gap between sequential vs. random 10 Modern column stores often keep tuples in some user-

disk throughput, bring this once elusive goal in reach, as ihas Specified order, which helps to restrict scans also in the
become possible to buffer enough updates in memory to allow horizontal dimension, if the predicate is a range condition
background migration of these updates to disk, where effici# zlong this order (i.e. allows to scan only those blocks from
sequential 10 is amortized among many updates. Our key goal , o1 mn that are relevant for the range predicate). The flip-

is that read-only queries always see the latest database w&a
yet are not (significantly) slowed down by the update processy. side of the coin of maintaining a particular order is thatkbul

To this end, we propose thePositional Delta Tree (PDT), that insert operations, typical in data warehousing workloaals,
is designed to minimize the overhead of on-the-fly merging of no longer localized at the end of each table, but may cause
differential updates into (index) scans on stale disk-basedata. gcattered disk I/O over the entire table.

We describe the PDT data structure and its basic operations Data compression. when combined with columnar storage or
(lookup, insert, delete, modify) and provide an in-detail sudy p ! g

of their performance. Further, we propose a storage architeture PAX, benefits from subsequent data items being of the same

called Replicated Mirrors, that replicates tables in multiple orders, type and belonging to the same value distribution, allowing

storing each table copy mirrored in both column- and row-wise for faster and more effective data compression than in row-

data formats, and uses PDTs to handle updates. Experiments i storage [17], [14], and hence further reduces disk 1/0. The

the MonetDB/X100 system show that this integrated architelcire disad ¢ P f dat is that full disk block

is able to achieve our main goals. isadvantage in case of updates is that a full disk bloc
needs to be read, de-compressed, updated and re-compressed
(introducing significant CPU cost), before being writterckha

. INTRODUCTION to disk. Extra complications occur if the updated data no

Read-optimized databases, that use columnar data storQg@er fits its original location. o
(DSM [5]) in combination with compression and replication Adding replication to this picture allows to maintain table
have recently re-gained commercial and research momé@plicas in R different orders, which can strongly increase
tum [14], [2], especially for performance intensive readstly the query percentage in a given workload that benefits from
application areas such as data warehousing, as they Ei$tered range scans, reducing disk /O for read quertes. T
significantly reduce the cost of disk 1/O with respect to rowbvious disadvantage of replication during updates is ttnat
clustered disk storage (NSM or PAX [1]), at the price of mor@mount of update I/O also increases by a fadtor

efor:ﬁwe ur%dattfn‘:" lication ar like data wareh irl])ifferential Updates. We argue that the key to providing good
€ same ime, application areas like data warenous u%date performance in read-optimized databases is to apeid

EXperience user pressure to shorten or even fully e!'m . dating the read-optimized (columnar, compressed, rdplija

refresh times, raising the golden question whether it isites data structures immediately. Rather, updates should lohddt

after all to marry the benefits of read-optimized databasts Yinto a RAM-basediifferential structure This structure grows
the update throughput of row-stores.

. . over time until a background checkpointing process migrate
The C-Store and Vertica systems try to address this quest . . o :
by splitting their architecture in a read-store and a Writﬁ)%rts of) it to disk, combining the effects of many updates i

store, where changes in the write-store are periodicaligete each single bulk disk write, thus amortizing I/O mainter&anc
. : ad . Durability in h an roach i hiev irectl
into the read-store [14]. In this paper, however, we focus cost. Durability in such an approach is achieved by directly

solutions where read-queries always see on the most rec ﬁ}ging updates in a (_jisk-based Write Ahead Log (WAL),
state of the database iwhich extends sequentially.

' The idea of using differential structures is quite old. Apar
Read-Optimized DatabasesColumnar storage allows scanfrom the original proposal of differential files [12], a well
gueries that need a subset of all columns to access datasblabéveloped data structure exploiting this idea is the LogdStr
that only contain useful data, reducing disk I/O requiretsertured Merge tree (LSMT) [9]. The LSMT is actually a stack
for a given query with respect to row storage. The disadegnteof trees, that differ in size by a fixed ratio, where each tseg i

https://core.ac.uk/display/301631203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(insert,delete) delta on top of the underlying data. Thentogt, for additional RAID protection. Additionally, each relatial
smallest, tree is typically cached in RAM, whereas the layotable may be replicated multiple times, each using a differe
of the other read-only, disk-resident, trees is optimized forder criterion. At least one replica contains all colunother
sequential access (100% full disk blocks of a large size)l&Vhreplicas may only contain a subset of all columns. Eachcaepli
the LSMT offers enhanced throughput with respect to insettas asparse indexon its order columns, that can be used
and delete-intensive workloads, the increased lookupamgler to perform range scans on both the column- and row-wise
scan cost (in the worst case, all trees have to be checkedrrors. Updates to both mirrors are amortized using the PDT
leading to at least one disk I/O per tree) has held back Read-mostly OLAP queries can exploit the columnar layout
acceptance as a general-purpose indexing structure. using MergeScan to retrieve (ranges of) columns with the

PDT. Providing transactional consistency without this aﬁec{?teSt updates from the PDT m.erged n, Wh”? a S|multan§ous
rkload of small OLTP queries can exploit the row-wise

ing the speed advantage of read-optimized databases, is e
. mirror.
key goal of this work.

. . N We evaluate our proposed Replicated Mirror set-up in the
_The previously propose_d dnfferentla[files and .LSMT Storﬁ/lonetDB/XlOO vectorized database engine, developed as a
differences agkey, type, kind) information. Applying deltas

then implies using a merge-join algorithm on keglues prototype at CWI [2], and show that it can fulfill our goal of

(in case of composite key being the conjunction of equalitknrzﬁzﬁsgt rt]r'g: gii?;;?;}é Faﬁ:;o;mricvc_gtg?gmmed with updat

tests on all corresponding key columns), which may make
the normal Scan operation considerably more CPU intensi@utline. This paper is organized as follows. In Section I,
We call this operator theMergeScan as it provides the we describe in detail the PDT data structure, and outline its
functionality of a (range) Scan operator, but has the agltlii basic operations in Section IIl. In Section IV, we then give a
task of merging in deltas. Note that such classical valudetailed definition of the proposed Replicated Mirrors seche
based differential delta merging has the disadvantage i DShat combines PAX-DSM mirroring with sparse indices and
systems that it forces to scan along Ady columns inall PDTs, and in Section V provide a performance model that
queries which can significantly increase their disk 10 needsnotivates its efficiency. In Section VI we describe relatenthkv

and impact performance. before concluding in Section VII.
In this paper, we contribute a new data structure called the
Positional Delta Tree (PDT). The PDT is a tree that contains Il. POSITIONAL DIFFERENTIAL UPDATES

the differential updates withtype €{insert,delete,modify.)

The PDT is designed to make merging in differential updatés Terminology

extremely fast by pre-computing the tuppesitions where A columnis a sequence of relational attribute values. A

deltas have to be applied. Therefore, instead of performingable, T', is a collection of related columns, all of equal length.

value-based MergeScan on tree key, the range scan can sindplyiple, or record is a single row withinZ". Tuples should be

count down to the next position where a difference has to lbéigned over columns, i.e., the attribute values that magke u

applied, and apply it blindly when the scan cursor arriveseh a tuple should be retrievable using a single positional xnde
Thus, the key advantages of the PDT over value-basealue, for all the columns that make up a table. This index we

merging are (i) PDT-based MergeScan is less CPU intensisal therow-id, or RID, of a tuple.

than value-based MergeScan, and (ii) queries need to perfor Tuples in a table can be ordered along a subset of attributes,

less 10 as the key columns are not strictly needed. S, and can have a possibly distinct set of key attribuf€s,
Unlike the LSMT, the PDT is primarily designed for use irthat uniquely identify a single tuple. A subset of attritsitieat

RAM. The lowest level in the data hierarchy is not a PDT, butefines a sort order while also being a key of a table we call

read-optimized disk storage (i.e. columnar, compressdtban SK.

replicated data storage). Search operations in the PDTvievo An update on a table is one woisert, delete andmodify. An

at most searching three PDTs (of which the top-most twiasert(T,t,i) adds a full tuple to tableT’, at RID ¢, thereby

are so small that they should fit in the L1 CPU cache). licrementing the RIDs of existing tuples at RIBs:- - N by

PDT search in RAM is unsuccessful, it escalates to an acces®. Adelete(T,) deletes the full tuple at RID from table

method supported by the disk storage layer (depending dhthereby decrementing the RIDs of existing tuples at RIDs

what is used). i---N by one. Amodify(T,1,j,v) changes attributg of an

. . . istin I RIDi to val .
Replicated Mirrors. Besides the PDT data structure, a seconebf(sting t!*p eat Dl tq aluev . .)
Assuming we maintain updates against a table in a differen-

contribution of this paper is to outline a physical databdese . : . . i
sign architecture for high update throughput data wareémust'al structureA, we can define the following table hierarchy:

based on Fractured Mirrors. The original Fractured Mirrors UpdateTable = (A, StableT able, timestamp) (1)
propo'sal [10] suggested as future work the use of a diffekent _ StableTable = DiskTable|UpdateTable)
technique to handle updates. We propose PDTs as exactly this
contribution, and combine it a with indexing and replicatio where a DiskTable is an immutable, disk-resident,
Replicated Mirrorsstore each relational table replica twiceread-optimized (e.g. columnar, compressed) table, and
in a columnar-representation and a row-wise representati®/pdateT able is an immutableStableT able, with differential
which end up on different sets of disks, thus obviating thedneupdates against it stored i\. The timestamp of an

UpdateT able represents the time it was instantiated, startingequences in the original data that do not have any updates
out with an empty differential file,A « (. Once an to be processed without any additional CPU overhead. Tuple
UpdateTable is used as aStableTable to create a new position, however, is a dynamic concept, as soon as tuptes ca
UpdateTable, it becomes immutable, and future updatelse inserted and deleted at arbitrary locations. To be able to
against the table should go into the differential structofe maintain differential updates by means of a dynamic pasitio
the newly created/pdateT able. This leads to a hierarchy we introduce thePositional Delta Treg(PDT).
with a DiskTable at the bottom, and an arbitrary number The PDT resembles &'-Tree, that stores differential
of differential structures stacked on top of it, where orflg t information of the form(SID, type, value), where SID is the
topmost differential structure can be modified. location within the underlyingtableT able where the update
We definestable-id or SID, to be the position of a tupleapplies to,type is one of insert/delete/modify, and thelue
within the aStableT able. Therow-id, or RID, is the position associated with the update. If the PDT is associated with a
of a tuple within the table image produced by applying athble,value is a atuple, if it is associated with a single column,

differential updates. value is atomic. Note that this also stores a value with tuple
deletions. We will elaborate on these issues later.
B. Value-based Deltas The PDT can be searched by either SID, RID, or (SID,

To be able to merge differential updates into a scan stregﬂ'P)’ to locate existing updates or add new ones. As RIDs

efficiently, the updates themselves can be kept in the soeror®'® che}ng|_ng contlnupusly all over the table, mater.|a'¢yz.|n
di maintaining them is unacceptable. Instead of matengli

of the table they apply to. If that is the case, interleavin
the differential updates into the scan stream boils down to Ds, we defineRID = SID + 4, with § being determined

two-way merge with at most linear complexity. Maintaininiy_the number of preceding inserts and deletes, and defined
differential updates ordered by their sort order attribigkies s _)
has been assumed in all previous work [12], [8], [10]. Stprin D_efmmon 1 Dur_mg a sequential scan of a table, or, alter-
both the main table as well as the deltas in order, is usuallgtiVely a sequential walk of the leaves of a PBTS defined
done using tree data structures, such as the aforementiofiedh® the total number of newly inserted tuples, minus the
LSMT [9]. We refer to the idea of identifying and maintainin(\;}“"mber_Of deleted t.uples, Up,t'" the scan position.
deltas using (ordered) attribute valuesVlue-based Deltas E@ch insert contributes an incrementéoby one, and each
and the concept of using a tree to store these \ésize-based delete coptrlbutes a decrementoby one. Maodifications do
Delta Trees(VDT). not have impact on the value 6f

Note that, in case the sort order attributes of inter§sgre ~ An example PDT can be found in Figure 1. Internal nodes
not a key forT', both the table and the differential file shouldn@intain#" child pointers, wherg” is the fan-out of the tree,
be maintained ordered oK, an extension of the sort order2nd two aligned lists of length’—1, the first of which stores
attributes that make it a key. Although such a maintenaneéPs, and the second storingvalues:
of updates is easy, the price has to be paid during mergi’sg-r_i nternal _node {
of the updates, as we need to locate the exact tuple each; d[F],
update applies to by comparing its values 8K to those del t a[F]
of the tuples in the original table, which can be a costly .p; d F],
process, in terms of CPU overhead, even when assuming thabar ent ’
both streams are sorted. Furthermore, in case we are dea}ing
with DSM, we would always need to scan along tR&’
attributes to be able to identify updated tuples, even if the The delta fielddel t a[;] represents the relative number of
query itself does not require access to these columns. kn cizserts and deletes in the subtree rooted at cthdtlt af 4] .
the sort order is not a key by itself, something not uncommate maintain delta on a per-subtree basis to avoid high main-
in analytical scenarios, especially if tables are rep#idain tenance cost (i.e. when adding an insert or delete we only
different sort orders, this boils down to scanning alongeast need to modify delta fields along the path from the leaf to
two columns. For tables without a key, value-based difféaén the parent). When searching the tree on RID, or (SID, RID),
updates require addition of an artificial key, like a tuple-iwe therefore need to compute the cumulative sum of deltas,
(TID). Clearly for DSM, value based differential updates dgntil we find thatsi d[] + >/ c/o00up() 98! tal 51 is bigger
not only induce CPU overhead, but disk 1/0 overhead as welan the RID we are searching for, in which case we take the
As these overheads violate our starting requirement tizat-rebranch to childi, as illustrated in Algorithm 1.
only performance should not be compromised, we invesiijate Leaf nodes of the PDT simply store update triples ordered

different solutions. on (SID, RID). in a structure like:
- PDT | eaf {
C. Positional Deltas sid[F],

An alternative way to maintain differential updates, is type[F],
by means ofposition rather than by value. This has the val ue[F],
advantage that updates can be merged efficiently, as it isparent,
trivial to compute the gap till the next update, which allows next

UpdateTable sip VAL RiD

StableTable m_ olalo
SID VAL RID Updates SIP > | a | 1
N INS a BEFORE A DELTA 3|1 |- o
OlA|O INS a BEFORE a O|A| 0 |A|2
o INS a BEFORE A CHILD |~ e —
1]B|1 MOD CINTO b 1|/B|[1]B]|3
2|c|2 INS d BEFORE G 2lc™2 4
a[ols | ASsEEeREC >

e
N DEL H s |57 so |9]- 3 4 EI5
DEL |

—1 INS | BEFORE J DELTA |13 |- DELTA |2 |-1 - 41E1 S 6
5/F |5 INS h BEFORE J 5/F| 6 |d]|7
INS g BEFORE J CHILD CHILD |, | — —

6|/G |6 MOD J into m i 6/ GX6 |d|8
MOD K INTO n —

TIH|7 DEL L 7B} 6\le|9
8|l |8 G|

o[l sp |[olo|2]3 sp |5|6|66 sp |7|8]9]- sib |9l9]o]- sip |10/ 11 -] -] & '. 6 |G 10

11
k1o | TYPE [[m]D TYPE M| 1|1 |1 TvPE |[D|D|1 |- TvPE |1 |1 | M| - Tvee | M|p| -] -|| 9L\ 9 19

- 10 K

.. |VALUE |al|al|b|- VALUE |c|d|d]|e VALUE |- |-|g]- VALUE |h|i |m]|- VALUE |h|-|-]|- 9 [h12

L1 1 i |13

9 14

lo]1]4]s] lo]7]8]9] EEEVECE) (121314 - | ECECRIE)

Fig. 1. Example of the Positional Delta Tree (PDT), and its ilscreating a virtual UpdateTable on top of an unmodifiedi8fEable

replica3
replica2 |
replical

DT

}

Per-Tuple PDTs.In this example, the PDT leaf nodes contain
a simpleval ue from a single column; while in a typical
database implementation its stores delta information fidire
tuples, such that theal ue field would then be a pointer or
offset into some tuple-space or -heap, as illustrated inreig.

As for storage overhead in that case, the important aspets a c;ﬁ‘nsnerf_snpa}cen] !pdate ———
the size of theval ue, si d, andt ype; as even with moderately C‘_’,'?: e == =
low F' these fields dominate. A typical implementation, the colC CI T T =1 =]
si d could be a 48-bits integer field. Thgpe takes three basic oant value- —-space

values {(nsert,delete,modijyfor which just 2 bits are required.
In a tuple-based PDT, however, for modify we also need ttf- 2. Saving PDT space across replicas
information which column was updated. This could be handled
by a 16-bitt ype, that uses 2 values for insert/delete and
leaves all other values to indicate a modification of a certaBID. Each tuple furthermore automatically has a RID, defined
column (identifying one out of maximum 65534 columnsys RID = SID + 6. This means that even deleted tuples
This sets the PDT overhead per update to 12 bytes, assunfitRy around as ghost records, sharing the RID of their direct
a 32-bitsval ue (offset). Note that when a table is replicateguccessor, as a deletion decrements the cumulathe one.
in multiple orders, a separate PDT must be kept for eablewly inserted tuples are assigned the same SID as the tuple
replica. However, the updated values in the various replica before(according to table sort order) which they are inserted.
identical, so it makes sense to share the tuple-space betweéearly, neither SID nor RID are guaranteed to be unique
replicas. This way, PDT RAM consumption scales sublinearWithin a PDT. Their concatenation however, is a unique per-
with replication degree. tuple key.

Figure 2 shows in detail how various table replicas, for Theorem 1:The concatenation of SID and RID,
each of which a separate PDT is maintained, can shard 4D, RID) is a unique key.
single value-space. The value-space is an memory-resident Proof: We prove by contradiction. Assume we have two
data structure that stores, separately, inserted rowsa f@ tuples with equal SID. The first of these is always a newly
all columns) and modifications (a value for one column onlyjnserted tuple, which incremenisby one. Given thaRID =
This split insert/modification storage minimizes PDT meynors7D + g, the second tuple can never have an equal RID.
utilization, since the PDT leaves that point to an insertes® Next, assume we have two tuples with equal RID. The first of
a single offset into the value-space that leads to all iegertthese is always a deleted tuple, which decremértty one.
values, while modifications on a single column store only Bhe second tuple can never have an equal SIDSBEBD =

single value. The use-counts maintained for inserts and fRrp — §. m
each updated column are for garbage collection (as will becorollary 2: If updates within a PDT are ordered on (SID,
discussed in the Checkpointing section). RID), they are also ordered on SID and on RID.

Corollary 3: Within a PDT, a chain ofN updates with
D. Basic Properties and Algorithms. equal SID is always a sequence df — 1 inserts, followed

To be able to maintain the tree, each tuple, being it a stalldg either another insert, or a modification or deletion of an
one, a deleted one, or even a newly inserted one, should havmderlying stable tuple.

Algorithm 1 FindLeafByRid(rid) Algorithm 3 AddDelete(PDT, rid, oldvalue)
Given a RID, finds the rightmost leaf containing updates dfinds the rightmost leaf containing updates on a givéh
given rid. Versions that find the leftmost leaf, or search bWithin that leaf, we either add a new deletion tripletpat,

SID or (SID, RID) are omitted or delete in-place.
1: node = root_node 1: (leaf,d) = FindLeafByRid(rid)
22:6=0 2: (pos,d) = SearchLeafForRid(leaf,rid, §)
3: while is_leaf(node) # true do 3: while leaf.sid[pos] + § = rid andleaf.type[pos] = —1
4. for i =0 to node_count(node) do do {Skip deletes with conflicting RIP
5: § = 0 + node.deltali] 4: pos =pos+1
6: if rid < node.sids[i] + ¢ then 5 §d=6§6-1
7: d = 0 — node.deltali] 6: end while
8: break from inner loop 7. if leaf.sid[pos] + § = rid then {In-place updatp
o: end if 8: if leaf.type[pos] = 1 then {Delete existing inseft
10. end for o: ShifLeafEntries(leaf,pos,—1)
11: node = node.child]i] 10: else{Change existing modify to delete
12: end while 11: leaf.type[pos] = —1
13: return (node, §) 122 end if

13: else{add new update triplet to lepf
14: ShiftLeafEntries(leaf,pos,1)
15: leaf.type[pos] = —1

leaf.sid[pos] = RID — ¢

Algorithm 2 AddModify(PDT, rid, newvalue)
Finds the rightmost leaf containing updates on a givéh
Within that leaf, we either add a new modification triplet at®
index pos, or modify in-place. 17 leaf.valuclpos] = old-value
_ — 18: end if{ Decrement deltas along the path from leaf to root
1: (leaf,0) = FindLeafByRid(rid) by 1}
2: (pos,d) = SearchLeafForRid(leaf,rid, o) 10: Increment NodeDeltas(leaf, —1)
3: while leaf.sid[pos] + § = rid andleaf.type[pos] = —1
do {Skip deletes with conflicting RIP

pos = pos + 1 Algorithm 4 AddInsert(PDT, sid, rid, newalue)
5=06-1 Finds the leaf where updates ¢sid, rid) should go. Within
- end while that leaf, we add a new insert triplet at indgxs.

. if leaf.sid[pos] + § = rid then {In-place updatp : (leaf,0) = FindLeafBySidRid(sid, rid)
leaf.valuelpos] = new_value : while leaf.sid[pos] < sid or leaf.sid[pos] + ¢ < rid do

. else{add new update triplet to lepf {Skip updates with lower (SID, RID)

10: ShiftLeafEntries(leaf,pos,1) § = 6 + leaf.type[pos]

11: leaf.type[pos] = 0 pos = pos + 1

12: leaf.sid[pos] = RID —§ : end while{Insert update triplet in le&f

13: leaf.value[pos] = new_value : ShiftLeafEntries(leaf, pos, 1)

14: end if . leaf.typelpos) = 1

: leaf.sid[pos] = RID — §

. leafwalue[pos] = new-value {Increment deltas along

Corollary 4: Within a PDT, a chain ofN updates with the path from leaf to root by j1
equal RID is always a sequence &f— 1 deletions, followed 10: IncrementNodeDeltas(leaf,1)
by either another deletion, or a modification of the subsetjue
underlying stable tuple, or a newly inserted tuple.

Adding a new modification or deletion update to a PDTespect to deleted ghost records. Inserting by SID only does
only requires a RID, as deleted ghost records are not preseot work as well, as we can not determine where to store it
in the final table image, which is also the image seen by thth respect to conflicting inserts on the same SID. As we want
modify and delete operators. We only need to make sure tlsaich conflicting insert chains to be stored according to the
the new update goes to the end of an update chain that conflintglerlying tables value based sort order, we need to ttensla
on RID, within the PDT. If the final update of such a chaifrom the values on attributeSK to a unique (SID, RID)
is an existing insert or modify, we need to either modify ocombination, identifying the existing tuple before whidiet
delete that update in-place, within the PDT. The procedureswly inserted tuple should go. How we achieve this mapping
for adding a new modification or deletion update to a PDiE discussed below. The fact that we maintain values forteele
are outlined in Algorithms 2 and 3, respectively. Tree sfieci tuples is related. For now, assuming we have (SID, RID) to
details, like splitting full leaves and jumping from onefléa insert at, we can add an insert update using Algorithm 4.
its successor, are left out for brevity. To keep PDT updates ordered on both (SID, RID) and on

For insert updates, inserting by RID only is not sufficiest, aheir values on the underlying tables sort order attriutds,
we can not determine where in the PDT to store the insert, witloth concepts should be correlated. For modifications and

[uy

© o Na R
N

© O N O U AW

Algorithm 5 SKtoSidRid(tuple[SK]) Algorithm 6 SKtoSidRid(tuple[SK])
This routine takes a partial tuple of sort key attribute eslu This routine takes a partial tuple of sort key attribute eslu
as input, and returns the position where these values bel@winput, and returns the position where these values belong
in terms of (SID, RID) ordering. in terms of (SID, RID) ordering.
1: sid = FindSID(tuple[SK]) {By means of traditional 1: for each column:
search res[c¢ = fetch(next V tuples)
2: (ridjp, ridp;) = GetRidRange

. if (gap > V) // fast code

for each columne
pdt[c] . merge_patch(res[c],V,inplace)
gap -=V

NoOOaR W

deletions there are no dangers of violating this correfatio
deletions triplets within a PDT always refer to an undeyin
stable tuple, which is assumed to adhere to orderingan ~ & ©lse
and modifications can only occur on attributes that are nof: for €ach column: // slow code
in SK (i.e. a modification of anSK attribute would result 1~ Pdt[c].mni_merge(res[], V)
in a deletion plus an insertion of the modified tuple, whictl: 9@P = check.i ns.and.del (key_col _pdt)
changes its position). Only inserts need special atterttion
retain an exact ordering ofi/X. This can be achieved by first
locating the SID of the tuple in the stable table before whicihe. decompressed) and patching can be done in place. The
the new tuple should go. With this SID we search the PDT féd ni -ner ge has to deal with insert/delete, and thus copies
any updates on that SID. As all updates in the PDT contaivays. It tries to exit as soon as it finds that the gap
a value, even deletions, we can search for RID of the tugié the next insert/delete is bigger than 63 (to avoid huge
before which to insert. fragmentation of VectorS).

Correlating (SID, RID) ordering and' K value ordering
is important for random tuple lookups. For example, wheB. Lookup

performing an index scan that involves range predicates, wey lookup query that selects tuples based on some predicate
need to be able to translate the predicate values to (SID),RIE handled in the general case by a MergeScan followed by a
SO that.we can produce the .correct range of .tuples, includigganselect. However, equality lookup to & attributes can
tuples introduced by PDT inserts and leaving out all thgle much faster (sub-linear) by taking advantage of indexing
got deleted. The procedure to transl&t&’ values to (SID, stryctures. In the Replicated Mirrors implementation inrMo
RID), is also used for determining the exact position of mseetDB/XlOO, for instance, we use a sparse index on$fe
updates, and is listed in Algorithm S. _ attributes that identifies a single 64KB PAX block where such
1) Complexity: Although it depends heavily on the work-yples are found (within the block, binary search lookup can
load, we could come up with at least average case compley ysed). Recall that both the read-optimized storage, #s we
under a uniform load (it's similar to B-tree, except that W@s the indices on it are stale (i.e. the differences aftetatie

cannot binary search within internal nodes, due to cumaticheckpoint are in the PDT). A lookup in the index thus yields
delta summation. We do have a small fan-out in generg syccessful) the stable ID (SID).

though). Space complexity should not be hard either. The second step is to use the SID to access the PDT. Note
that multiple leaf nodes in the PDT may have the same SID,

I1l. DATABASE OPERATORS so looking up a SID also involves a range traversal among
A. MergeScan sibling leaves. The thus found changes should be analyzed to

In systems that use block-oriented processing, where a S S whether or not a tuple exists: initial success n lookup o
e stable data may be overruled by a corresponding delete in

does not produce a single next tuple, but a blockvector . . . : .
of V next tuples, the check to see whether there is a chal thg PDT, while failure to find a tuple n the gtable Image may
rlge overturned by the presence of an insertion.

within the nextV tuples can be done once per block; reducin .
P P | In case there are multiple, stacked PDTs, the PDT lookup

the checking overhead. Since the percentage of updatesstu)
tends to be very low<1%) this will often be the case, such rocess should be repeated for all PDTs starting at the towes

that the more expensive merging code path can be avoidedlIt:
the common case.
A brief outline of the optimized merging algorithm is inC- Insert
Algorithm 6. Insert queries involve a table name and a list of attribute
The idea here is thatap represents the distance in positiorvalues that represents the tuple to be inserted into th&.tab
till the next insert or deleteyot modify. If the gap is large, we They are easy in case there is no sort order on the table
nmer ge_pat ch these gap tuplesrer ge_pat ch first checks being updated, or, if the sort order is some auto-increntente
whether there are modifies for this column within distandeiple ID. In this case, the newly inserted tuple can be simply
gap. If not, we return a hard data pointer. If there are, wappended at the end of the table.
first memcpy input data, and then patch modifications. If In case there is a tabl& K order, the first step is to
i n_pl ace is true, input data is already in private buffedetermine the insert position (SID) in the StableTable; as

____——Teadjwrite pdt ——— Fractured Mirrors divide ("fracture”) the columnar and

pParse] N row-wise mirrors across all disks, to spread out the load.

[l The expected load to the column- and row-wise is different:
column-wise data is accessed only sequentially in largalchu
that consist of multiple disk blocks (we use a 2MB chunk
el 1 _ size), whereas the row-wise data is accessed using random
'_-E')@ft:%“z dlsrzwgwiézg,ﬁ?ﬁgr Cé{f 502&”;) read 10 (at a disk block granularity of 64KB) for handling
replical colufiin—wise mirror OLTP queries, yet also sustains a low-intensity sequential
replica2 checkpointing load at the chunk granularity.
replica3 In our MonetDB/X100 implementation, the row-wise mirror
is stored using PAX [1], not NSM. Like NSM, PAX stores all

Fig. 3. Replicated Mirrors: replicated ordered table geraising a Frag- data of a single row in the same disk block. However, inside
mented Mirror plus PDT and Sparse Index the disk block, column values are laid out consecutivelysTh

storage layout better fits the column-oriented MonetDBAX10

storage access methods and allows the Scan operator to
described above. The second step is to insert the new tugd&rieve vectors of data (small columnar slices that contai
in the PDT (the top-most PDT, if there is a stack of PDTsHata of around 100-100 tuples) used in Visctorizedquery
Note that a PDT insert starts as a PDT lookup, until the corrgsrocessing model, without any CPU investment to change the
leaf node is found/created for the insert. Along the way, thepresentation. Also, PAX allows to apply column-wise com-
delta values in the traversed internal nodes are incremdiyte pression techniques. The Replicated Mirrors proposal svork
one. independent of the particular row-wise storage format used
(e.g. NSM, PAX).

D. Delete Indexing. In the Replicated Mirrors approach, each table is

Delete queries involve some predicate that identifies tRgSUmed to be stored in a certain order. The tuple order in
tuples to be deleted. For each tuple, if its a (SID,RID) igach_ column- and row-wise mirror is identical among them
present in the PDT as an insert or a modify, it is removed'd indexed by ahared sparse indexhat can be used to

from the PDT. If the (SID,RID) is not present as an insert j#CC€SS both mirrors. _ _ _
the PDT. it is inserted as a delete in the PDT. The sparse memory-resident B+-tree index contains one key

per row-wise block. The leaves store a value, a block number
_ (pointing into the row-wise mirror), as well as a tuple numbe
E. Modify that is a SID (StablelD). As it stores around 20 bytes of

Modification queries also rely on a predicate that describéata per 64KB NSM/PAX block, the size overhead is around
tuples to be modified. However, modifications involve only 4/2700; making it possible to cache all sparse indices in RAM
subset of the attributes participating in a table. If a medifi Random-lookup single-record OLTP queries access theespars
attribute is present as an insert or modification in the PDMdex to get a block number. After fetching the NSM (or PAX)
we can simply modify the value in the PDT (note that in cagdock, the individual tuple (and thus SID) is found usingaiy
of one PDT per tuple, this modifies the PDTs for all replicasearch on the ordered columns.
at once). Otherwise, a new modification entry is added to theThe SID can also be used to identify chunks in the DSM
PDT. partitions. Given their large size (and thus low number) as

Modifications are more complicated in cas& & attribute Well as their static nature (chunks are only updated during a
is being changed, as this means the tuple will change @8eckpoint), we do not use a B-tree for this this sparse DSM

position. Such modifications therefore have to be seen adngex. Rather, a simple sorted array kept for each DSM column
deleted followed by an insert. holds its start SID; and binary search is is used to find chunks

by SID. Apart from the side, the simple array also holds the
minimum and maximum value of each chunk. These minimum
and maximum values can be used to limit the chunks read by
We now discuss the proposed Replicated Mirroring schemghclustered scans, in case a range-selection query is being
depicted in Figure 3. processed. This technique is especially effective in cdse o
correlated columns (such as dates), were a table storedeon on

Mirroring. The gist of the original Fractured Mirror [10] .
. . column, is also (almost) ordered on another column. In such
paper is to store data both column- and row-wise, such that

o . . cases, range selections on that other column can prune avoid

the query optimizer can choose which representation toarse .
i .) ; ocessing many chunks.

which query (and even mix representations in the same queR/r)
The observation that database installations often alresgy Replicating. Our proposal of Replicated Mirrors re-uses the
physical mirroring in the form of RAID, is exploited to argueidea of a column- and row-wise mirror of table, and combines
that recovery could exploit the fact that data is mirroregiHo it with table replication in multiple orders. Only one regai
cally, thus making additional physical mirroring unne@egs (the “master”) is required to store all columns, other regé

such that physical storage cost is not increased. may only contain a subset of the table columns. The concept

IV. REPLICATED MIRRORS

uncommitted update

of multiple replicas roughly coincides with that of clusdr = Ti‘S_
indices, however it recognizes that read-optimized da@dba U

better store such indices in their native memory-tight tpda Re adj’n"a;‘ﬁaiais
unfriendly compressed and columnar forms. Trans) Copy for
Each replica is sorted on a different set of order keys, = —1 _——— ____ isolation

and each replica comes with its own row- and column-wise <<L2Cache ‘ Table
mirrors, its sparse index. Additionally, each replica ntaiins a TSs Storage
PDT data structure for each column (once, as PDTs are shared RAM
between the row- and column-wise mirrors). -

Processing an OLTP single-row update proceeds as follows: ‘vlirrored Storage plus Sparse Index
(i) use the order keys to lookup up the relevant PAX block (ii)

fetch this PAX block using one 64KB read /O (iii) look up

the tuple inside the block with binary search, so we get i3 SIFig. 4. Snapshot Isolation with Layered PDTs: only the sriféflte-PDT
(iii) update the PDTs of the affected columns in this replic&€€ds to be copied to achieve isolation

If there are other table replicas that have affected colymns

these also need to be processed by repeating these steps. Not _))) _
that there is only one single-block read 10 on the criticahpa {0 implement transactions using snapshot isolation and opt
If there areR replicas; R — 1 subsequent 10s are needed t&Stic concurrency gontrol. Th|s'ch0|ce ql!gns well witteth
establish the SIDs of the affected tuple in these replidassg ©verall goal of adding transactional facility to the system
|Os can be processed in parallel, though). without slowing down read-only query performance, as in
snapshot isolation reads do not have to be locked.
Checkpointing. In the very simplest solution, a checkpointis 1pq Log Structured Merge (LSMT) Tree [9] principle of
a Scan query that materializes all tuples in a new table co%mg a stack of trees can also used in the PDT, to provide
Note that Re_plic_ated Mirrors keeps multiple _repl_icas pf th@neap snapshot isolation. A very small (L1 cache sixgdje-
same table (in different orders) and.each replica |t§eIISMn PDT is the one that gets updated by committing update
of a NSM (/PAX) and DSM table mirror. Each replica keepgeries. This small data structure can be copied in a quick

a separate PDT, but all PDTs of the same table reference dgigmory copy operation, and is tied to a specific database snap
in a single value-space (as illustrated in Figure 2). TREET ghot A’ second-tier largeRead-PDTis shared by all queries
checkpointing a table, implies checkpointing all its rep8, 5n4 contains all remaining changes. Update transactioas us
each of which consist of two mirrors. After checkpom_tmgm additional top-tierTrans-PDT that starts empty, and in
both mirrors, the PDT can be emptied fully (all data in ifyhich they insert their own (uncommitted) changes. If the
de-allocated). transaction commits, the changes in the Trans-PDT are merge
However, in the value-space, data can not yet be deallocatggl, 5 copy of the Write-PDT, that then becomes the new
since other replicas may not have finished checkpointingsier write-PDT seen by incoming queries. This mechanism
Therefore, reference counts should be added on the Va'ﬂ?&vides snapshot isolation while practically avoidingy an

in the value-space: only when the last replica that refae”qatching/checking overhead during query processing.
an updated value is checkpointed, it can be cleared out. NoteAS the Write-PDT keeps growing as more transactions
that it is reasonable to assume a limited number of replica’ mmit, its size will start to grow significant (outgrowing

_sutch tha.ltt:]hes? coutnhters ca? be fitted mtto sdmall (te:?“‘: quH CPU cache), and isolation cost (due to memory copying)
Integers; therelore, these reference counts do not AW pecome noticeable. Therefore, the master Read-PDT is

much overhead. replaced from time to time by a new copy which incorporates

Within a single replica, it may also be desirable to performé@\I changes in the Write-PDT (which is then emptied). The

partial checkpointthat e.g. only checkpoints a single COIumncurrent simple solution for doing so is to scan the leaves of

or even only a subset of the disk blocks (or chunks) of tf}ﬁe Write-PDT and apply all changes to a copy of the Read-
column. The idea behind partial checkpoints is to optimiz,gDT which becomes the new master afterwards

the balance of PDT RAM reduction with checkpointing l/O. Recent analysis of Snapshot Isolation anomalies with re-

However, if an insert (or delete) is checkpointed already to A . .
one column, but not to another column, thel t a field in spect to Serializability [6] has provided a simple and cost

the intemal nodes of the PDT that tells how much the RITClve 1"%1od Of concuency conuoL1n siapsnot st
and SID differ at that point, would need to be different for Y 9 Y Lol

both columns. Therefore, partial checkpointing i onlysik can also be applied in our Replicated Mirrors approach. The

. . idea is to keep for each transactidn two initially false
if a separate PDT is kept for each column (as opposed Q .

Lo " .~ booleand.in andT.out, and aborfl" as soon as both booleans
one per tuple), which implies additional RAM consumption

in proportion to the number of columns, due to PDT nc)dI%ecome true. The variables are maintained as follows: if{1)

storage overhead. In this study, we have not investigatdpa reads data' modified by an overlappm_g_ transactiprwe set
L . T.out = S.in = true, and if (2) T modifies data read by an
checkpointing in depth, and kept it out of scope for our .) .
: overlapping$ we setT.in = S.out = true. To implement
performance evaluation.

(1), each time a new disk chunk is read, we should check the
Snapshot Isolation.In the MonetDB/X100 system, we chosePDTs of all overlapping transactions. As chunks consist of

millions of tuples, such checks will not affect the performea durability and consistency, which is not modeled here expli
large scan queries that ready multiple chunks, as they aie wiy. Disk 10 for a WAL can be turned into bulk sequential
amortized. To check (2), we need to keep an administratit@ by batching WAL records and delaying the reporting of
table that for each chunk read inserts a SID ranges. Updatnsaction commit until a large WAL block has been flushed.

gueries need to check this table to detect conflicts. WAL 10 is thus not seen as a bottleneck.
By ignoring the WAL and focusing on record |10, the PDT
V. COMPARATIVE PERFORMANCEMODEL approach on first sight always outperforms the traditional

We now provide a cost model to better understand tfigw-store as it performs just a single read IO for each
quantitative properties of Replicated Mirrors. We procéred OLTP query, to fetch the tuple and compute its SID. The
two steps: first we focus on OLTP and consider the propertieBdates are not written back to disk, rather added to the
of an OLTP system that processes a high throughput streanP&T data structure. However, the PDT data structure thus
single-tuple updates both on a traditional (single clestds+- keeps growing, and therefore background checkpointing is
tree) row-store, and compare it with ordered row-wise sferanecessary to keep its size under control. We assume as upper

with a sparse index, and updates flowing through a PDT (witinit that we sacrifice at most half of the RAM to PDT

checkpointing). storage L,q: = & = Zzew). The question is thus when

As a second step, we then consider the full Replicated MEheckpointing gets in balance with the time in which the
rors approach, where there also is a column-wise mirror aHgdate workload fills up PDT memot,;:
potentially multiple replicas, that serve a concurrergastn of

OLAP queries. CheckPointTime = MemFillTime <

Srow —_ det

The below table shows the parameters used in our model: Beheekpoint —Hgg <
Tow = Tow =
N | number of tuples in a table Beneckpoint 200« DIxT
C | number of co’I)umns Beheckpoint = 66DT'T _
H | update throughput (inserts/updates/deletes per sec) where Bepeckpoint 1S the 10 bandwidth (bytes/sec) taken
W | average column width (bytes) inti : ;
D | number of disks (an even number) up py che_ckpomtmg traffic. The percentage of bandwidth
R | number of table replicas (in Replicated Mirrors) dedicated is thus:
Z average compression factor (in in Replicated Mirrors)
T PDT per tuple size (uncompressed tuple widtf)= RC(W + 9)
S total disk storage size (bytes) . Bcheckpomt 66T1
P | total RAM pool available (bytes) CheckpointOverhead = DB = B
B large sequential read/write single disk bandwidth (bgesy
I | maximum disk 10s/sec that a single disk delivers If we look at the TPC-H schema [15], the uncompressed

We assume that the database system can use a RAM bufigie width C « W) of the main Lineltem table is 66 bytes.
that is 1/100 in size with respect to disk stora@é:= S/100. Substituting the parameters of the high- and low-end disés t
This is motivated by the observed trends in cost per byt the checkpointing overhead at 1.5% resp. 0.6%, which is
of respectively RAM and magnetic disk, where we basicaliery low.
allocate equal amounts of money to disk and RAM. In the yearMoreover, the above calculation assumed that the PDT
of this writing (2008), on the high end, a fast Seagate Cleetaased system runs at the same throughput as the row-store
NS SCSI drive costs $40%€400G,B=80M, I=300) while a (H = %); however, since the PDT based OLTP setup needs
AGB stick of registered ECC DDR2 server memory also go&® perform only a single read /0 per query, its maximum
for $400. On the low end, for $200 we get a SATA drive thahroughput without checkpointing i81. At that speed, check-
delivers (6=400G, B=70M, I=100) and as well as 4GB of pointing overhead increases threefold to just 4.5% reg862.
common DDR2 RAM. therefore checkpointing and PDTs can outperform the Be-tre
owered row-store by a factor close to three.

It is clear though that checkpointing efficiency decreases
th larger per-tuple PDT memory consumptidén which de-
iPends on uncompressed tuple widthl’. If we set 33% as the
maximum checkpointing overhead, we can derive a maximum

maz = 57, Which translates to records of 3KB resp. 7KB for

OLTP Only. We examine the worst-case where the OLTB
load consists of updates only. In a row-store, an OLTP quer
that inserts, modifies or deletes a single record is assume
perform just two 10s, for reading and writing the disk bloc
where the row is stored (i.e. the table is stored in a B+-tr

with all but the leaf level cached). However, note that wgta. .\ *) . . .
disk block typically involves two writes (if some RAID levid high- and low-end disks respectively. These bounds are quit

: enerous, and an undisputed trend in magnetic disk hardware

used). Concurrent updates are assumed to be independentzan . o . .
. . is that bandwidth B) is improving faster than 10 operations

not to cause locking conflicts, hence throughput scales wi o
the amount of disks. Thus, throughput is limited o= 2L P°' secondl), therefore, we may expet}.. to rise in future
: ' 9np 3 I%ears, favoring our approach.

gll;l;r]leiﬁ;steg\./;/r\ﬁeua;nsurglelz ; Aslsﬁa}ﬁrigcnhci):-C:;Ji;[(egelgcigdiit?h We therefore conclude that today’s large RAM sizes, and the
: g al g) "fend that disk bandwidth improvements outpace 10 latency
buffer pool will only eliminate 1/100 of the IOs, notimprayg . . ; .
erformance noticeabl improvements, have created an opportunity for differéntia
P o . . - u(Pdate processing to be used in OLTP DBMS engines as a
We now compare this with updating a single read-optimize . . .
.) N . Viable alternative for in-place block writes.
row-wise mirror with its sparse index and PDTs. Both the

approaches are assumed to use a Write Ahead Log (WAL) facluding the DSM mirror. If a DSM mirror is present, the

above calculations change a bit, as twice more data needs tdhe price per GB of raw Flash memory is around a factor
be checkpointed. Going back to a desire of equaling rowestd® lower than RAM, thus it would be logical to make the Flash
update throughput (i.eH = % updates/sec) using Repli-PDTs 8 times larger than the RAM PDTs, and this would allow
cated Mirrors, we can thus roughly double the checkpointirig push back the checkpointing overhead by a factor 8. Note
overhead to 3.0% resp 1.2%. In this case, the disks are dfil&t these lower-layer Flash PDTs would experience random
only 33% busy, leaving 66% (minus 3.0% resp. 1.2%) faead access during search operations, sequential readsacce
processing DSM queries. from checkpointing and sequential read and write access fro
In addition, if we consider a@eplicatedtable (e.g.R = 2), the Apply() operator when RAM-based PDT data is migrated
three things change: (i) if the update raté remains the to Flash. These access patterns are all highly efficientastI
same atH = %, then the disks will be 66% busy, sincememory, where only random writes are problematic.
a random PAX lookup must be performed for each replica We therefore view Flash PDTs as an extremely interesting
(i.e. R per update query). (ii) all replicas on disk need to bepportunity to make merging differential updates cheaged,

checkpointed, hence checkpointing cost increases lipeitth to help PDTs cope with very wide or highly replicated tables.

R. (iii) additionally, the memory consumption per updatedpT4ppT. The advantage of the PDT approach is that DSM
value per PDT leaf node is 12 bytes, assuming a per-tuple PQilaries do not need to read thé columns and CPU merging
implementation (thanks to the shared value-space betwec%rét is lower than a VDT approach. The advantage of the

replicas, memory consumption is independentofcolumnrwid;/DT approach is that an OLTP update query only needs

C). Therefore, increasingt leads to a memory consumption, gjngie |0, whereas the PDT approach needs to establish

factor of 1 + . Note that such a memory consumptiofe affected (SID,RID) for each replica, leading B 10s.
increase, r_educes the memory _flII time, causing the need w combining both approaches, low-cost CPU merging and
checkpointing to complet@(ﬁ) times fas:ter. single 10 updates can be obtained. In the so-called VDT+PDT
These three factors combined cause increasing reduce ,55r04ch, updates are in principle handled using VDTS, but
the time that disks are available to handle OLAP queries Qhije read-only queries read i columns on some replica,
the DSM mirror in the orderO(R?). For example, in the 54 5 piggybacking side effect, the (RID,SID)s of the updates
high-end scenario witl? = 2, the disks will be 66% busy it are merged in are established, removed from the VDT and
handling random PAX lookupsi{ per query to establish theserteq into the PDT. Therefore, most of the updates will be
SID of the gﬁected tuple.ln each .repl|c§1), and checkpogtin, the PPTs, such that queries profit from low-cost positiona
must run twice as fast while touching twice the volume, he”?ﬁerging. However, the VDT drawback of having to read the
checkpointing overhead increases four-fold to 12%, legvirg - in all queries remains in VDT+PDT (avoiding to read
only 22% for handling queries to the DSM mirror. Thereforgnnks that do not have a VDT update will not help much, as
in cases where the OLAP load is higher than 22% (assumigth the large DSM chunks the probability that at least one

an update-idle system), overall performance equilibriumao tuple has a VDT update remains high in many query loads).
system that sustains the above described concurrent OLdP an

OLAP load will show a slowdown in OLAP as well as oLTpCooperative Checkpointing.Both DSM read-queries as well
throughput. as checkpointing perform bulk reading and writing of large
Given the above, we argue that replication with deghee disk blocks (chunks, of e.g. 2MB). Intelligent schedulin[;] 0

should be offset by scaling disk resourdesf the system by concurrent req.uests that do not_ have a strict orderlng, das b
an equal factoR. In that case (i) the PAX random lookup loacdshoWn to provide strong benefits for data warehousing work-
stays equal as there afetimes more disks to handle requestio@ds (Cooperative Scans [17]). Thus, an interesting avéu
concurrently and (ii)R times increased checkpointing volumdUrther exploration is to see whether checkpointing cagrtie

is properly offset by similarly increased disk bandwidthhay NPUt chunks (to which PDT changes must be applied) to
remains is a need to also increase the available RAM sizedgiVe out-of-order, allowing the checkpointing operaimioe

hold the PDT trees of the replicas. However, with an averafi¢orporated in the Cooperative Scans framework. This doul
column width = 4, and assuming® = C as an upper limit allow chec_kpomtmg overhead to disappear as a performance
on the replication degree, PDT RAM is independen€ofnd _factor, as it would process DSM chunks as they are brought
increases at most by factor 3, while disk storage increages' PY DSM read-only queries.

R.
VI. RELATED WORK

A number of papers investigated the differences between

A. Possible Extensions the DSM and NSM. DSM storage [5] has been identified to

be beneficial not only for I/O benefits, but also for in-memory
Flash PDT. Our performance model showed that there is processing [1] To get these benefits without significant glean
price of at least a couple of percent of read-only bandwidth to the system architecture, PAX storage model [1] proposed
paid up (and a limit imposed on tuple width and replication)sing DSM data inside a traditional N-ary disk page, allow-
for the per-update memory consumption of the PDT for it timg good cache-performance. Multi-resolution block spera
fit in RAM. While it is left out of scope for this paper, we model (MBSM) [16] investigates the physical placement ef th
argue that it may well be beneficial to introduce a layer @SM-based data. In this approach, the good scan performance
PDTs in Flash memory. of DSM is preserved, while the cost of tuple reconstruction

is reduced, since values of different attributes from thmesa [6]
tuple are stored closer on disk than in the naive DSM im-
plementation. The fractured-mirrors approach [10] sugges(;)
keeping two copies of data on two disks, one copy in NSM and
another in DSM. This allows using the best model depending
on the task, as well as combining both mirrors in a single yuer
for even better performance. However, research on handling|
of updates in these papers is limited.

The idea of maintaining updates against large databases[jj]l
a differential file for efficiency reasons, was introduced by
Severance and Lohman in 1976 [12]. Copeland elaborated (&M
this idea in a DSM context [5]. C-Store Log-structured merge, q
tree [9] defers and batches index updates to reduce index
maintenance costs in insert/delete-heavy query workload<l
Similarly, [7] proposes multi-level indexing in a warehowg
environment. C-Store [14] borrows on these ideas by propgss]
ing to let updates go to a separate write-store (WS), while
gueries are being ran against an immutable read-store (I%].

A. Fekete, D. Liarokapis, E. O'Neil, P. O’Neil, and D. Site. Making
snapshot isolation serializabl&CM Trans. Database Sys80(2):492—
528, 2005.

H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarsirad
R. Kanneganti. Incremental Organization for Data Recardand

Warehousing. InProceedings of the 23rd International Conference on
Very Large Data Basepages 16-25, San Francisco, CA, USA, 1997.

Morgan Kaufmann Publishers Inc.

S. J. O’Connell and N. Winterbottom. Performing joinsthrgut decom-
pression in a compressed database sys®8MOD Rec.32(1):6-11,
2003.

P. O'Neil, E. Cheng, D. Gawlick, and E. O'Neil. The LogrGttured
Merge-Tree (LSM-tree)Acta Informatica 33(4), 1996.

R. Ramamurthy, D. J. DeWitt, and Q. Su. A Case for Fradiuvlirrors.
The VLDB Journal 12(2):89-101, 2003.

A. Segev and J. Park. Updating distributed materidlizeews. |IEEE
Trans. on Knowl. and Data Engl(2):173-184, 1989.

D. G. Severance and G. M. Lohman. Differential Files:eiFhAppli-
cation to the Maintenance of Large DatabasA€M Trans. Database
Syst, 1(3), 1976.

C. L. A. C. Stefan Bittcher. Hybrid Index Maintenane® Contiguous
Inverted Lists.Information Retrieval 11(3), 2008.

M. Stonebraker et al. C-Store: A Column-oriented DBMB. Proc.
VLDB, 2005.

Updates from the WS are propagated to the RS on a tempor@sy Transaction Processing Performance CouncilPC Benchmark H

basis, and are therefore not immediately visible to subeeiqu

: L . 46l
qgueries. The original papers on fractured mirrors [10] also
proposes using a differential file to buffer updates in mem7]
ory. Comparing to our work, it uses a standard value-based
approach. Also, authors do not discuss how to propagate the
changes to the mirrors, while this paper proposes a number
of optimization strategies, including partial checkpwigt
Deferring of the updates has also been proposed in othes,area
including view maintenance [4], [11] and updating inverted
lists in information retrieval applications [13].

VII. CONCLUSIONS

This paper proposed a novel approach of handling the
updates in a database, based on two fundamental innovations
First, merging of in-memory updates with disk-resident sta
ble data has been significantly improved with a proposed
Positional Delta Treedata structure, that reduces the need
to perform expensive value-based checks. Secondly, €orag
model based on the idea d&eplicated Mirrorsallows to
have quick NSM lookups necessary for update handling, while
providing multiple DSM replicas for efficient scans. As a
result, the proposed architecture achieves the read peafore
of DSM systems, only marginally impacted by the update
merging process, while at the same time providing update
facilities that can match those of standard row-based s\sste
We also presented that this architecture allows efficievdsp
bly partial, checkpointing and can provide transactioitaison
based on the snapshot isolation model and layered PDTSs.

REFERENCES

[1] A. Ailamaki, D. DeWitt, M. Hill, and M. Skounakis. WeavinRelations
for Cache Performance. IRAroc. VLDB 2001.

[2] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hypapélining
Query Execution. IrProc. CIDR 2005.

[3] M. J. Cahill, U. Réhm, and A. D. Fekete. Serializable laimn for

snapshot databases. fmoc. SIGMOD Vancouver, Canada, 2008.

[4] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trikey.

Algorithms for deferred view maintenanc&IGMOD Regc. 25(2):469—

480, 1996.

[5] A. Copeland and S. Khoshafian. A Decomposition Storageldloin
Proc. SIGMOD 1985.

version 2.1.02002.

J. Zhou and K. A. Ross. A multi-resolution block storagedel for
database design. IRroc. IDEAS 2003.

M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super<$8d@AM-CPU
Cache Compression. IRroc. ICDE 2006.

