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Cache-Conscious Radix-Decluster Projections

ABSTRACT
As CPUs become more powerful with Moore's law and memory latencies stay constant, the
impact of the memory access performance bottleneck continues to grow on relational operators
like join, which can exhibit random access on a memory region larger than the hardware
caches. While cache-conscious variants for various relational algorithms have been described,
previous work has mostly ignored (the cost of) projection columns. However, real-life joins
almost always come with projections, such that proper projection column manipulation should
be an integral part of any generic join algorithm. In this paper, we analyze cache-conscious
hash-join algorithms including projections on two storage schemes: N-ary Storage Model (NSM)
and Decomposition Storage Model (DSM). It turns out, that the strategy of first executing the
join and only afterwards dealing with the projection columns (i.e., post-projection) on DSM, in
combination with a new finely tunable algorithm called Radix-Decluster, outperforms all
previously reported projection strategies. To make this result generally applicable, we also
outline how DSM Radix-Decluster can be integrated in a NSM-based RDBMS using projection
indices.

1998 ACM Computing Classification System: [H.2.4] Main-Memory Database Systems, Query Processing
Keywords and Phrases: main-memory databases; query processing algorithms; cache-conscious algorithms; joins;
projections
Note: Work carried out under projects INS1.2 ``Database Architecture'', INS1.3 ``Query Optimizers'', and INS1.4
``HPQP (MonetDB)''.
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1. INTRODUCTION

Random memory access outside the CPU cache(s) has become very expensive over the past decade and will
remain so in the future. As such, the bottleneck for low-level database data access is shifting from I/O to
memory access [ADHW99, KPH+98, BGB98]. While the performance penalty for inefficient usage can be
dramatic, the database field need not despair. Several decades of progress in database technology has already
produced a host of techniques for processing data volumes stored on large but slow memories (i.e., disks)
by making efficient use of a smaller but faster memory (RAM). The recent research intocache-conscious
query processingfocuses on transforming these techniques to work one level higher up the memory hierarchy
(optimize memory access by making efficient use of the CPU caches) and/or to devise new techniques. We
build on recent work into making the join operator cache-conscious, among others by introducing aPartitioned
Hash-Join[SKN94] that can be paired with a fine-grained partitioning operator calledRadix-Cluster[BMK99]
to partition huge relations into a large number of small clusters that each fit a CPU cache with just a few tens
of KBs.

A limitation of these previous efforts is that so far they only considered joins on thin relations consisting
solely of the join keys and producing only a table of matchingoid pairs (i.e., a join-index [Val87]). However,
any real-life RDBMS join query goes accompanied by some projection of non-join columns into the result.
The cost of handling such projection columns depends on their number, type(s) and the relation cardinalities
(both inputs and result). The actual cost impact can vary from zero (in the not-so-realistic case where there
are no projections at all), to totally dominating (e.g., imagine a join with thousands of projection columns to
propagate feature vectors in a multimedia application). In our performance evaluation, we find that queries may
spend more than 90% of their time in projection. Therefore, efficient handling of projections should be part of
any cache-conscious join technique.
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Figure 1: Pre- vs. Post-Projection

1.1 Problem Statement
This paper describes optimization of CPU- and memory-resources of generic equi-joinincludingprojections:

SELECT larger.a1, .., larger.aY,
smaller.b1, .., smaller.bZ

FROM larger, smaller
WHERE larger.key = smaller.key

The focal point of our analysis is the performance impact of the amount of projection columnsa1..aY

respectivelyb1..bZ , given various relation and join result sizes. Handling projections efficiently only becomes
hard whenboth the smaller and larger table have many tuples, such that their individual columns do not fit
the cache. OurRadix-Declusteralgorithm addresses this situation.

The commonly applied projection strategy in a RDBMS ispre-projection(see Figure 1), where the projec-
tion columns are fetched in the table scans preceding the join, and where the projection column values travel
as ’extra luggage’ together with the join keys through the join pipeline. In contrast, Radix-Decluster is apost-
projectionmethod, i.e., one where first the join result is computed, creating a (partial) join-index, and only
afterwards the full query result is produced by computing the projection columns. Though we focus the exper-
iments on one particular join algorithm (Partitioned Hash-Join), the Radix-Decluster algorithm is independent
of the join method chosen.

RAM vs. Disk Optimization Since we have already mentioned the analogy between optimizing CPU cache-
access and optimizing disk access, it is instructive to point out the main similarities and differences. As for
similarities, both disk and RAM have to contend with a high random access latency, that relative to CPU speed
is increasing exponentially over time. Also just like disk, RAM is a block device (block=cache line), and se-
quential data access has now become much faster than random access, even when random access makes use of
all data in the block (we call this “optimal” random access). This effect is caused by a new feature in memory
subsystems calleddata prefetching: the CPU or in some cases the memory chipset automatically detect se-
quential access patterns and schedule data loads in advance for these [LH99, HSU+01]. This is complemented
by advances in DRAM technology, which keeps banks of recently accessed locations open, such that adjacent
locations can be more quickly available. On our experimentation platform, sequential access – as obtained by
STREAM [McC95] – is almost 10 times faster than “optimal” random access: 3.2GB/s vs. 360MB/s (a 178ns
latency for getting a cache-line of 64 bytes makes for 360MB/s).

An important difference between disk and RAM is that the disk can be controlled using an OS interface,
allowing traditional DBMS systems full control over their buffer cache. In contrast, RAM is cached implicitly
in hardware, (most often) using an LRU mechanism with limited associativity. Thus, the only way that query
processing algorithms can now influence RAM caching is indirectly by controlling data placement and access
pattern. A second difference is the small granularity of the CPU caches. There is a “15 year gap” between
CPU cache and RAM sizes: problem sizes of 2004 must now be crammed in caches having the RAM sizes of
1989. This means that e.g., partitioning to fit something large into the CPU cache must createmanymore small
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partitions than classical partitioning to fit something on disk into RAM ever had to. Having to manage (tens of)
thousands of partitions rather than a handful can expose bottlenecks that remained unnoticed in the disk case,
as we will see in our discussion of the Radix-Cluster algorithm.

Experimentation Platform The work reported here partly builds upon the research into cache-conscious query
processing in the MonetDB project. MonetDB1 is a main-memory database system targeted at query-intensive
applications [Bon02] that uses a vertically fragmented storage scheme called the Decomposition Storage Model
(DSM) [CK85]. In DSM, each tuple gets a unique system-generatedoid that is typically densely ascending
(0,1,2,...), and for each column a DSM table is created that holds[oid,value] pairs. Comparable to what
RowIds are in Oracle, the MonetDB system has support forimplicit columns – also dubbedvoid columns
(“virtual-oids”) – to represent such densely ascendingoid columns on the logical level without taking any
physical storage. Thus in MonetDB, each relational column is stored in a separate[void,value] table. Most
DSM systems [Syb96, RDS02] do away with the extra storage for theoid s, such that the DSM data layout boils
down to a single array for each column. DSM is cache-friendly when (OLAP) queries need only a subset of all
table columns (i.e., in case of lowprojectivity). In the commonly used NSM storage scheme (i.e., a layout with
each tuple contiguously stored), this means that parts of the cache line will not be used. In DSM, each cache
line only contains values from the same column, and only relevant columns are loaded, achieving optimal cache
line usage.

A second characteristic of MonetDB is its column-wise query processing model, which allowed for an imple-
mentation of its query processing algebra without need for an interpreter to evaluate expressions (each operation
performs a simple, hard-coded, operation on large arrays of values, producing a new column as result). This
goes in conjunction with the absence of low-level record/attribute lookup and data movement functionality,
as columns are accessible by position as arrays of a homogeneous type. The experiments performed confirm
these factors give MonetDB a significant advantage in terms of raw CPU efficiency that is strongly linked to
this query execution model.

The third main characteristic of MonetDB is cache-conscious query processing. MonetDB has been the birth
ground for a number of novel cache-conscious algorithms [BMK99].Radix-Decluster– the contribution of this
paper – is a crucial addition to this collection.

Related Work Though our experimentation platform is MonetDB, which is a DSM system, we compare our
approach with its more common counterpart NSM, and in particular with pre-projection in NSM (which is
used in almost all commercial database systems). However, there has recently also been some research into
NSM post-projection, in particular the Slam- and Jive-Join algorithms [LR99]. While these algorithms work
under the assumption that the join-index is already computed and available (hence pre-projection is not an
option), and they are designed mainly for an I/O setting, we also include them in our NSM comparison with
Radix-Decluster to evaluate their usefulness from the perspective of cache-conscious query processing.

An interesting alternative storage scheme is PAX[ADHS01], which basically does DSM within an NSM
disk page. Thus, PAX cache-line usage can be as efficient as DSM under low projectivity, but PAX still wastes
I/O bandwidth on such queries, which easily can cause a performance bottleneck. Though we will make our
case that Radix-Decluster on DSM can be scaled to a disk-based RDBMS that runs on a high bandwidth I/O
subsystem (e.g., using a well-sized RAID array of SCSI disks controlled through PCI-X), our experimentation
is limited to main-memory execution, by lack of such an (expensive) setup. As in main-memory the difference
between PAX and DSM is small, we limit ourselves here to the two extremes NSM and DSM.

Finally, we build here on previous work on detailed performance modeling of hierarchical memory access
cost [Man02, MBK02] using hardware-independent formulas that are parametrized by all relevant architec-
tural characteristics. These parameters can be derived automatically at run-time with theCalibrator utility 2,
which is also integrated in MonetDB. The cost formulas are easy-to-define as they consist of a combination
of a number of basic patterns (with known formulas) that can be combined automatically with composition

1Available athttp://www.sourceforge.net/projects/monetdb
2Calibrator is available fromhttp://monetdb.cwi.nl/Calibrator
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functions. In all, these cost models allow us to quickly analyze the behavior of the various algorithms, and to
draw conclusions on their optimal parameter settings.

1.2 Outline
In Section 2, we give a short re-cap on cache-conscious Partitioned Hash-Join and Radix-Cluster, which are
basic building blocks in this research. In Section 3, we show how Radix-Cluster can be used to optimize mem-
ory access of post-projections to one of the join relations. In order to optimize cache usage for projections on
bothjoin relations, we then introduce our newRadix-Declusteralgorithm. In Section 4, we perform exhaustive
experiments with pre- and post-projection strategies both for the DSM and NSM storage schemes, and com-
pare non cache-optimized strategies with our Radix algorithms, as well as with Jive-Join. In Section 5 we make
our case why and how DSM post-projection with Radix-Decluster should be integrated in standard RDBMS
technology, before we present our conclusions and discuss directions for future work in Section 6.

2. CACHE-CONSCIOUSJOIN

We give a short re-cap on cache-conscious join, usingPartitioned Hash-Joinin conjunction withRadix-
Cluster[BMK99]. In Appendix A, we give cost model descriptions for these algorithms, and show how these
correctly predict their performance (see resp. Figures 9a and 9b).

2.1 Partitioned Hash-Join
In the Hash-Join algorithm considered in this paper, the outer relation is scanned sequentially, while a hash-
table is used to probe the inner relation. The very nature of the hashing algorithm implies that the access pattern
to the inner relation (plus hash-table) is random. Therefore,Partitioned Hash-Joinfirst scans both relations,
and partitions them according to a hashing criterion, making each inner partition smaller than the cache size,
such that the subsequent Hash-Joins on the corresponding partitions all have good cache behavior [SKN94].
The “cursors” in the output partitions where the partitioning operator inserts tuples as it scans its input, all need
to be in a cache-line in order to achieve good performance during partitioning. As the number of available
cache lines is limited (especially in systems that have a slow TLB cache, with usually only 64 entries) and the
number of cursors grows with the size of the relation (a bigger relation leads to more partitions of a given size),
the simple single-pass partitioning is limited in its scalability: above a certain relation size, the partitioning
operation itself becomes a performance problem due to cache thrashing, as not all cursors can be kept in cache
anymore.

2.2 Radix-Cluster
The Radix-Clusteralgorithm, which uses incremental multi-pass partitioning, has been shown to solve the
operand partitioning problem. It provides efficient partitionings needed for large joins in two or even more
passes [BMK99]. Briefly,radix cluster (B,P) uses the lowerB Radix-Bitsof the integer hash-value of the
join attribute to cluster a relation intoH = 2B partitions. By performingP sequential passes, each of which
useBp bits, starting from the left (∑P

1 Bp = B), Radix-Cluster limits the number of partitions created per pass
to Hp = 2Bp (∏p

1 Hp = H). Figure 2 sketches a Partitioned Hash-Join of two relations L and R. First, both
relations are clustered into 8 partitions (3 bits) using 2 passes. The first pass uses the 2 left-most of the lower
3 bits to create 4 partitions. In the second pass, each of these partitions is sub-divided into 2 partitions using
the remaining bit. Once both relations are clustered, a hash-join is performed on all matching partitions. For
ease of presentation, we did not apply a hash-function in Figure 2. In practice, though, a hash function should
even be used on integer values to ensure that all bits of the join attribute play a role in the lowerB bits used for
clustering.

3. DSM POST-PROJECTION

The DSM post-projection strategy has two phases:

1. Make a join-index.First we access only the DSM tables storing the key columns, and join these together
to find matching pairs of tuples: a join-index [Val87].



3. DSM Post-Projection 5

00

11

10
01

0

0

1
1 0

1

0

1

001

010

100

111

011

000

0
1

0
1

0
1

0

11
10

01

00

2−pass radix−cluster

(111)
(100)

(110)

(001)

(001)
(001)
(011)

(001)
(100)

(000)
(101)
(010)

2−pass radix−cluster
hash−join

partitioned

92

57
17
81

66

06

96
75

03

20
37

47

96
57
17
81
75
66
03

20

06
47

92

37

17

32

35
20

96

03

66

10
2

47 1

32

17

66
2

96

47

35
20

03
10

(011)

(010)

(000)

(100)
(111)

(001)

(011)

(010)
(000)

(010)

L
R

47
92

06

66
75

57

03
17

81

20

37
96

66

47
20

03

35

96
2

32

10

17

black tuples hit (lowest 3-bits of values in parenthesis)

Figure 2: Partitioned Hash-join

2. Do column projections.One-by-one, we construct the columns of the result relation, each in a separate
DSM table, by using the join-index to fetch values from one input column (also stored in a DSM table).

The join-index consists of[oid,oid] combinations of pointers into both “smaller” and “larger” input re-
lations. Theseoid s are not necessarily implemented as pointers, but may also be integer record numbers,
byte offsets or RowIds (combinations of disk-block numbers and byte offsets). The projection operations
are Pointer-Based Joins orPositional-Joins, with negligible CPU cost. In MonetDB, columns are stored in
[void,value] tables, which are implement as arrays3. Thus, anoid is a simple integer (starting at 0 for the
first entry), and Positional-Join equals array lookup.

One should note that the DSM post-projection join strategymaterializesthe join result. This is inevitable
for the so-called “hard” join cases, where we must join two relations that do not fit the small-but-fast memory
(i.e., the CPU cache). This is similar to scalable I/O-based join algorithms such as Sort-Merge-Join or Hybrid
Hash-Join, that must be applied when the inner relation exceeds the RAM buffer size and pipelining is not
possible.

In MonetDB, a join only is “hard” if theindividual columns - rather than the entire “smaller” relation -
exceed the CPU cache. In the other, so-called “easy” cases, we can use e.g., simple non-partitioned Hash-
Join, by building a hash-table on the “smaller” relation to generate the join-index. The join-index will then
contain theoid s of the “larger” relation in ascending order, such that the Positional-Joins for projecting the
input columns into the result exhibit a sequential RAM access pattern. As discussed in Section 1.1, sequential
RAM access is well-supported by modern hardware. In contrast, the Positional-Joins for the projections from
the “smaller” relation will have a random access pattern. Luckily, these columns fit the CPU cache in the “easy”
cases, so the cache-lines where the input columns are stored will stay cached in the CPU after the first access,
such that subsequent (adjacent) data fetches can be serviced from the cache.

In this paper, we attack the problem of executing “hard” joins in a cache-conscious manner. With CPU
caches limited to a couple of MBs, and assuming an average column-width of 4 bytes, this currently translates
into joins between (intermediate) relations thatbothhave 500K or more tuples, which is a common and thus
relevant problem.

3.1 Partial Radix-Cluster
We use Partitioned Hash-join, as described in Section 2, to join two relations that both exceed the CPU cache
in a cache-conscious manner. Due to the nature of Partitioned Hash-Join, neither theoid s of the “larger” nor

3Columns of variable-sized types like string use an extra – separate – memory buffer, where the array simply contains integer offsets
into.
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those of the “smaller” relation appear in ascending order in the resulting join-index. A (standard) improvement
is therefore to sort the join-index, in the order of theoid s of the “larger” relation. In MonetDB, we re-use the
Radix-Cluster algorithm as a fastRadix-Sort, by exploiting the property thatoid s stem from dense domains
[0::Ni (whereN is the size of some relation). For all types butoid , Radix-Cluster transforms each value with
a hash function, both to obtain integer bits and to combat skew. Foroid s, hashing is not applied asoid s are
integers already and not skewed. This also means that a Radix-Cluster on allsignificantbits (i.e., the lowermost
log2(N) bits) is equivalent to Radix-Sort. Radix-Sort can be compared with traditional run-generating sort
algorithms, as it also partitions the data on a sequential pass, and then (iteratively) further processes each
partition.

Fully sorting the join-index, however, is overkill as apartial orderingcan achieve the same effect. If the
join-index consists of clusters that each containoid s of only a certain (disjoint) range, a Positional-Join into
a projection column sequentially processes each cluster one by one, and while processing each individual
cluster, accesses only a limited region in the projection column. If this region is small enough (such that it
fits the cache), the algorithm will approach optimal cache (re-)usage. To make partial clustering possible, we
added the possibility to indicate to Radix-Cluster to stop early and ignore a certain number of lower Radix-Bits.
Stopping early leaves the relation unsorted on the lowermost bits (i.e., partially ordered). The benefit of this
“partial-cluster” strategy is that it has the potential to optimize memory performance of the column projections
using Positional-Joins just as well as a full Radix-Sort, but at a clustering cost that is much less.

Figure 3 shows that we first Partially Radix-ClusterJOININDEX in one pass (P = 1), using one Radix-Bit
(B = 1) and stopping early at the first (I = 1), lowermost, Radix-Bit. On the resulting[oid,oid] table, we
create a[void,oid] view JOIN LARGER(using themark() operator [Bon02]). The right column ofJOIN LARGER

contains the clusteredoid column, and the left column consist of a new densely ascendingoid sequence that
represents the join result. Subsequent Positional-Joins between thisJOIN LARGERview and the input columns
have a nice sequential access pattern, eliminating the cache problem. We compute the optimal number of
Radix-BitsB and Ignore-BitsI as follows:

B = 1 + log2(jCOLUMNj) – log2(C / COLUMN))

I = log2(jJOININDEXj) – B
wherejRj denotes the number of tuples in a tableR, Rdenotes the byte-width of these tuples,C is the size of the
cache in bytes (see [Man02, MBK02]). For example, if we have a CPU cache of 64KB and we have values that
are 4 bytes wide, then a cluster of 16,384 tuples would just fit. If the source table from where the projections
come has 10M tuples, we would create 210 = 1024 clusters to arrive at a mean cluster size of 10,000 (which
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would be the largest cluster size< 16,384). Such clusters can be created with a partial Radix-Cluster on the
highest significant 10 bits (i.e., bits 24-15, aslog2(10M) = 24), allowing Radix-Sort to ignore the lowermost 14
bits.

3.2 Radix-Decluster
Even when using Partial Radix-Cluster to optimize projections into the “larger” relation, cache problems still
occur for the projections from the “smaller” relation. It is clear that the join-index (and thus the join result)
cannot simultaneously be clustered inbothoid orders. Figure 4 shows that after performing the projections into
the “larger” relation, we re-cluster the viewJOIN SMALLER(that similar toJOIN LARGERconsists of fresh densely
ascendingoid s left, paired with the right column of the clustered join-index). This yields a temporary[oid,oid]

table. We then create two[void,oid] viewsCLUST RESULTandCLUST SMALLERfrom this table using themark()

operator. The left column of these views is a fresh “void” column of new ascendingoid s. The right column of
CLUST SMALLERholds theoid s of the join-index that point into the “smaller” table in a nice clustered order, while
the corresponding values of the right column ofCLUST RESULThold the correct position of those join-tuples in
the final result. The next step in the process is to useCLUST SMALLERto perform the projections with cache-
efficient Positional-Joins. This, however, produces projection columns (denotedCLUST VALUES) which are not
yet in the correct order. TheRadix-Declusteralgorithm – depicted in detail in Figure 5 – performs the task of
putting them in the correct final result order in a cache-friendly manner.

Radix-Decluster exploits the following two properties of the right column ofCLUST RESULT, which was cre-
ated by Radix-Clustering a leftvoid column on the order of its right column:(1) as Radix-Cluster neither adds
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Figure 5: The Memory Access Pattern Of Radix-Decluster

nor deletes any values, this column would again form a dense sequence (0;1; ::N�1) when sorted.(2) within
each cluster, theoid s are still sorted. This happens because Radix-Cluster scans its input sequentially, and
appends values to their respective output cluster, thus locally respecting the input order.

Property (2) implies that this right column can be sorted bymerging all sorted clusters. However, the CPU
cost of a merge ofN tuples partitioned overH = 2B sorted clusters is at leastO(log(H)N). Alternatively,
using Property (1) we could just insert the values fromCLUST VALUES in the result array using theoid s from
CLUST RESULTas array index, with CPU costO(N). However, these insertions would constitute a random access
pattern larger than the CPU cache.

We obtain the best of both approaches, by restricting the random access to aninsertion-window W(cf.,
Figure 5). Each iteration of the algorithm processes each cluster once, advancing a cursor in it while theoid s
still fit in the window, inserting the values at thisoid position. Property (1) tells that after processing each
cluster once,all positions in the insertion window will have been filled (it is a denseoid sequence). Then,
the window is shiftedjWj positions and the process repeats until all cursors have reached the end of their
cluster. The window sizejWj is preferably much larger than the number of clusters, such that per iteration
in each cluster multiple tuples fall into the window. These multiple tuples are accessed sequentially in both
CLUST RESULTandCLUST VALUES. This memory access pattern is crucial, as the sequential access fully uses the
cache lines that store both columns. The only restriction is thatjWjmust fit the memory cache (i.e.,jjWjj �C),
as it is filled in random order.

Pseudo-code of the algorithm is in Figure 6. Theradix count previously mentioned in Figure 4, analyzes
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<Type>[]
radix_decluster<Type>(

int cardinality, nclusters,
Type values[cardinality],
oid IDs[cardinality],
struct { int start, end } cluster[nclusters])

{
<Type> result_column[] = malloc(cardinality*sizeof(<Type>));
int windowLimit, windowSize = CACHESIZE / 2*sizeof(<Type>);

for(windowLimit=windowSize; nclusters>0; windowLimit+=windowSize) {
for(int i=0; i < nclusters; i++) {

while (IDs[cluster[i].start] < windowLimit) {
result_column[IDs[cluster[i].start]] = values[cluster[i].start];
if (++cluster[i].start >= cluster[i].end) {

cluster[i] = cluster[--nclusters]; // delete empty cluster
if (i >= nclusters) break;

}
} // while more cluster elements in window

} // while more clusters to merge
} // while more insertion windows to fill result
return result_column;

}

Figure 6: The Radix-Decluster Algorithm

a (partially) Radix-Clustered column and returns the actual sizes of the clusters. These sizes are used in the
Radix-Decluster to initialize thecluster border structure.

The Radix-Decluster projection strategy is more expensive than the partial-cluster strategy discussed earlier.
Both strategies feature one initial Radix-Cluster, and for each projection column a Positional-Join, but the
former adds an extra Radix-Decluster operation for each projection column. Hence, it will only be used for
getting projection columns from the table with cheaper projections. Which input relation in the join has the
cheapest projection phase depends on the number of projection columns in both relations, the data types in
these projection columns, and the number of tuples in both input relations.

4. PERFORMANCEEVALUATION

In this section, we present experiments done on a 2.2GHz Pentium 4 machine, with a 64-entry TLB with miss
latency of 50 cycles, a 16KB L1 cache with 32-byte cache lines and a miss latency of 28 cycles, a 512KB L2
cache with 128-byte lines and a miss latency of 350 cycles (i.e, the latency of the 2GB PC800 RDRAM main
memory is 178ns).4 Our experimentation platform is MonetDB, also in the NSM experiments, where NSM is
“simulated” by introducing new atomic types that hold 1, 4, 16, 64, and 256 integer column values, and which
are copied and projected from using a NSM projection routine that iterates over such a “record” and copies
selected values out of it.

In our experiments, we executed our example project-join SQL query using various DSM and NSM query
processing strategies described in the following. We use relations of equal sizeN ranging from 15K to 16M
tuples, consisting ofω 2 f1;4;16;64g all-integer (4-byte) columns. We vary the join hit ratesh2 f3;1;0:3g,
and projectπ 2 f1;4;16;64jπ�ωg columns from both relations into the result. Finally, we also present exper-

4The early work on cache-conscious query processing [SKN94] reported a 30 cycle latency, thus we observe a 12-fold increase in 9
years.
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iments where one of the join relations is a selection on a base-table that selected a fractions2 f1;0:1;0:01g,
such that we getsparseprojections. In all experiments, all processing happens in main-memory (no I/O or
page faults).

4.1 DSM Post-Projection Experiments
We first analyze the performance behavior of Radix-Decluster in isolation. Figure 7a shows the relationship
between size of the insertion window (cf., Section 3.2 and Figure 5) and performance. We used hardware
performance counters [HSU+01] to obtain detailed information on the amount of L1, L2 and TLB misses. This
data enabled us to formulate and validate the performance model described in Appendix A. In this formula,
#w = jX0j=jWj denotes the total number of insertion windows used. Our models can predict and accurately
explain what is happening, as is seen by the fact that the dots (values obtained by experiments) and lines (the
cost model) in Figures 7a, 7b and 9d nicely coincide.

If we look in detail at Figure 7, we see Radix-Decluster become faster as the insertion window becomes
larger, which is explained by the fact that a larger insertion window leads to higher average number of tuples
w processed per cluster in each iteration, improving sequential memory bandwidth usage inCLUST RESULTand
CLUST VALUES. However, the insertion window sustains a random access pattern, such that whenjjWjj becomes
bigger than the cache sizeC (our L2 has 512KB), performance drops sharply, due to an increase in L2 misses.
A less important threshold is whenjjWjj becomes bigger than the number of pages that fit the TLB, after which
TLB misses will start to occur during the inserts. Both these thresholds are drawn in Figure 7a. Another cause
for TLB misses is the number of input clusters: if it is bigger than the number of TLB entries (and it is, in the
depicted case of 8 Radix-Bits = 256 clusters), each Radix-Decluster iteration will cause two TLB misses when
starting to process a new cluster, both inCLUST RESULTandCLUST VALUES. However, this happens only every
one inw tuples, such that its impact diminishes quickly with increasing window size. Our analysis showed
that choosingw = 32 is sufficient to achieve good memory bandwidth usage, and this is the value we use in
Figure 9d to confirm the accuracy of our model on multiple cardinalities and Radix-Bits.

We then turn our attention to the interplay between Radix-Cluster, Positional-Join and Radix-Decluster in
our Radix-Decluster DSM post-projection strategy, as depicted in Figure 7b. In Section 3.1, we already gave
a formula for computing a good number of bits for Radix-Clustering the join-index, such that the subsequent
Positional-Joins run well. Figure 9c confirms the accuracy of our predictive model for Positional-Joins between
relations of multiple cardinalities (hit-rate 1), clustered with varying granularity (Radix-Bits). In the setting of
Figure 7b we can indeed verify thatjRj= 8M, R= 4 leads toB= 8, which is the lowest number of Radix-Bits
for which Positional-Join runs optimally (it then achieves minimal L2 misses). This is usually the optimal point



4. Performance Evaluation 11

1e+00

1e+01

1e+02

1e+03

1e+04

 0  5  10  15  20  25

number of radix-bits

3e+04  
L1TLB L2

m
ill

is
ec

on
ds

cardinalities in all plots:

a) Radix-Cluster

1e+00

1e+01

1e+02

1e+03

1e+04

 0  5  10  15  20  25

number of radix-bits (0 = unclustered)

3e+04  
L2 TLB L1

m
ill

is
ec

on
ds

16000000 4000000

b) Partitioned Hash-Join

1e+00

1e+01

1e+02

1e+03

1e+04

 0  5  10  15  20  25

number of radix-bits (0 = unclustered)

3e+04  
L2 TLB L1

m
ill

is
ec

on
ds

1000000 250000

c) Clustered Positional Join

1e+00

1e+01

1e+02

1e+03

1e+04

 0  5  10  15  20  25

number of radix-bits

3e+04  
L1TLB L2

m
ill

is
ec

on
ds

cardinalities in all plots:

d) Radix-Decluster

1e+00

1e+01

1e+02

1e+03

1e+04

 0  5  10  15  20  25

number of radix-bits

3e+04  
L1TLB L2

m
ill

is
ec

on
ds

16000000 4000000

e) Left Jive-Join

1e+00

1e+01

1e+02

1e+03

1e+04

 0  5  10  15  20  25

number of radix-bits

3e+04  
L2 TLB L1

m
ill

is
ec

on
ds

1000000 250000

f) Right Jive-Join

Figure 9: Modeled (lines) vs. Measured (points) Performance of various Join-Phases (DSM, π = 1)

overall, as Radix-Decluster cost only increases with more Radix-Bits. It sometimes is better to use even fewer
Radix-Bits. The performance hit taken on Positional-Join, might then be compensated by a cheaper Radix-
Cluster. As Radix-Cluster is executed only once, but Positional-Join for every projection column, this usually
happens only if the number of projection columnsπ is very low. To perform well, that is, without running into
cache or TLB problems, Radix-Decluster is limited by two factors. First, we need to process a sufficiently high
w tuples from each input cluster to exploit the sequential memory bandwidth. We saw above, thatw = 32 is
the value to choose. Second, the insertion window size must not exceed the cache sizeC. From this, we can
conclude that Radix-Decluster can handle relations of sizes up tojRj=C2=(32�W

2
) efficiently. This formula

resembles a similar bound as given in [LR99] for Jive-Join.
We finally analyze which DSM post-projection strategy for our generic join query works best and under

which circumstances. Note that for DSM systems onlyπ matters, not the actual number of columns in the table
ω (as they are fragmented vertically in distinct columns - and the unused columns stay untouched). Therefore,
a DSM experiment for a certainπ holds for allω. We consider four strategies, each identified with a one-letter
code:

u Unsorted:one Positional-Join from the join-index into each projection column.

s Sorted:first Radix-Sort the join-index, then execute the Positional-Joins.

c partial-Cluster: first partially cluster the join-index. We take the number of Radix-Bits that works best
(on our platform, this leads to 256KB clusters).

d radix-Decluster:like the previous, but each Positional-Join is followed by Radix-Decluster.
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Figure 10: Overall Join Performance

Figure 8 summarizes the performance of the various DSM post-projection strategies, depending on the
amount of projection columnsπ and cardinalityN. For small cardinalities (N � 125K), all strategies that
do any kind of reordering lose to simple unsorted processing of the Positional-Joins, since the columns are so
small that they fit the cache anyway. For larger cardinalities, however, the unsorted approach always loses by
a big margin (e.g., by almost a factor 10 atN = 8M andπ = 256). With smallπ, partial-clustered processing
beats sorted processing. The gap shrinks with growingπ, and withπ > 16, sorted processing wins. Finally, we
see that the Radix-Decluster strategy always loses from the partial-cluster strategy, but is actually quite compet-
itive, beating unsorted processing by a large margin. As explained, Radix-Decluster is to be used only for the
second (smaller) projection table, with unsorted processing as the only alternative, as sorting or partial-cluster
is only applicable to the first projection table.

4.2 Comparison of Overall Join Strategies
Figure 10 shows a comparison of DSM Post-Projection using Radix-Decluster with NSM Pre-Projection, DSM
Pre-Projection, and two NSM Post-Projection variants: our own Radix-Decluster and Jive-Join [LR99]. All
these variants use the cache-conscious Partitioned Hash-Join; they vary only in the projection strategy. To show
the overall effect of all cache optimizations, we also include NSM Pre-Projection with naive non-partitioned
Hash-Join (“NSM-pre-hash”).

To analyze the impact of all parameters (π;N;h), Figure 10 depicts three plots, each varying one parameter
while keeping the others fixed. We observed similar behavior in experiments with different values for the fixed
parameters.

Figure 10b shows that with decreased hit-rate, all strategies become cheaper (due to the smaller join result)
but DSM Post-Projection even more, which is explained by the decreased overall impact of the projection
phase (with the relatively expensive Radix-Decluster), with respect to the cost for creating the join-index with
Partitioned Hash-Join.

Figure 10c shows that all strategies scale linearly with cardinality. The steeper increase of DSM Post-
Projection (“DSM-post-decluster”) in the lower range ofπ occurs because on small cardinalities, individual
columns fit in the cache, such that the relatively expensive Radix-Decluster is not necessary, as indicated by
the point types that identify the projection method used for both the left and the right table (with the one-letter
codes defined in Section 4.1).
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Pre-Projection Alternatives Most systems other than MonetDB that use DSM or other forms of vertical
fragmentation, such as transposed files [Bat79] or projection indices [OQ97], use a scan operator that scans all
columns simultaneously (calledAssemble() in [RDS02]).

One factor to consider in all our comparisons is that DSM Post-Projection has a CPU efficiency advantage
over all other alternatives. Due to the column-at-a-time execution in MonetDB, its operators have “zero degree
of freedom”, such that in their implementation a hard-coded operation on a hard-coded type is executed in a
tight inner loop that iterates over large arrays. Modern compilers can handle such code well, achieving high
IPC by e.g., loop pipelining. The other strategies handle all projection columns simultaneously (tuple-at-a-
time), and have to deal with some degree of freedom, namely a list of projection columns, which is passed
at run-time (additionally, the NSM strategies have to extract column values from a NSM record by looking at
record offsets stored in a table header). Such code not only has to perform some more work (CPU overhead)
but the additional complexity and dependencies in the inner loops are bound to hinder the compiler in getting a
good IPC.

The main difference in Figure 10a between DSM Pre-Projection (“DSM-pre-phash”) and DSM Post-
Projection is this very CPU advantage of the latter. A second smaller difference is that as Pre-Projection
handles all projections at the same time (during the join), less tuples fit in the clusters created by Radix-Cluster,
such that it more quickly needs multiple passes. This is again compounded by the CPU disadvantage, allowing
it to trade less extra CPU for better memory access (e.g., two-pass Radix-Cluster for creating many clusters
almost never wins, leaving the strategy with a bad memory access pattern).

The difference between DSM Pre-Projection and NSM Pre-Projection (“NSM-pre-phash”) is mainly in the
better cache-line usage of DSM. On the positive side, the projections done by the Radix-Clustering of the NSM
relations access the input relation sequentially. Thus, even if cache-lines are used sparsely, the pain will be
reduced somewhat by automatic memory prefetching on modern hardware (it is “only” a bandwidth problem).
As can be seen in Figure 10a, this impact is only considerable at lowπ.

Finally, the big difference in NSM Pre-Projection between non-partitioned and Partitioned Hash-Join is ex-
plained by the performance hit taken by uncachable random memory access. As the projectivityπ increases,
naive Hash-Join uses its cache lines relatively better, and it approaches Partitioned Hash-Join (but on no occa-
sion surpasses it).

NSM Post-Projection Alternatives The performance of NSM Pre-Projection atπ = 1 in Figure 10a roughly
corresponds to the first phase (the creation of the join-index) in the NSM Post-Projection strategies. This cost is
considerable, giving both Radix-Decluster on NSM (“NSM-post-decluster”) and Jive-Join (“NSM-post-jive”)
a hard time competing with the other strategies, as creating the join-index is only their first step. Subsequently,
they need to access the wide NSM base tables one more time for performing the projections. This would
of course have been very different had we assumed the (clustered) join-index to be already present as an
accelerator structure. As we concentrate on large ad-hoc joins, however, the join-index cannot have been
precomputed.

Jive-Join first sorts the join-index, and then carries out a special Positional-Join (“Left Jive-Join”) with the
one join input, that directly re-sorts its output on theoid s of the other table. It generates two separate outputs,
in the same order (which is the final result order), one containing the clusteredoid s, the other containing all
projection columns from the first join input. In the second phase, a second special Positional-Join (“Right Jive-
Join”) is done between each cluster ofoid s (that is first sorted for better access) and the second table, where
the results are written back in the order of the result (the order of theoid s before re-sorting) [LR99].

As the detailed performance results on Left and Right Jive-Join in Figures 9e and 9f show, the Left Jive-Join
phase may suffer from a too high cluster fanout in much the same way single-pass Radix-Cluster does, while
the Right Jive-Join may suffer from too few (=big) clusters, much like Partitioned Hash-Join does. However,
the strategy of creating not too many cluster in the first phase, then refining them with Radix-Cluster in order
not to have too big clusters in the Right Jive-Join, does not work as then the reordering in Right Jive-Join has
random access to a too large cluster.

The scalability of both Radix-Decluster as well as Jive-Join is limited toO(C2=T2), whereT is the tuple
width. Therefore, on large cardinalities, wide NSM tuples can quickly get these algorithms into cache problems,
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Figure 11: Impact of Selectivity: Sparse Clustered Positional Join (N = 1M)

limiting their applicability for cache-conscious join.

Sparse Projections Sparse projections occur when a join relation is a selection on a base table. Figure 11
shows that the performance of Positional-Join suffers significantly with a decreasing selection percentage. This
is more of an issue for DSM than for NSM, as in DSM cache-lines hold values of multiple consecutive tuples,
and if only a small percentage is used, sequential RAM bandwidth utilization decreases. In NSM, cache-lines
typically hold only values of a single tuple, and bandwidth efficiency mainly depends onprojectivity, not on
selectivity. Still, this need not be a show-stopper, as sequential RAM bandwidth is in rather generous supply
and unlike latency shows steady progress as hardware evolves.

The effect of sparse projections on DSM Post-Projection is also shown in all Figures 10a,b,c using error
bars. The smallest error bar shows performance with 10% selectivity (i.e., cardinality of the underlying base-
table is 10N) and the second corresponds to 1% selectivity (cardinality is 100N). While we see that DSM
Post-Projection performance decreases with a lower selectivity percentage, it clearly stays the better strategy
overall.

We should note that this comparison is worst-case for DSM Post-Projection. First, for brevity we omitted
the sparse access data for NSM, which is also affected by sparse access, only to a much lesser degree. Second,
if the selectivity is low, such as 1% or less, then in many cases the intermediate relation would become small,
making the join an “easy” instead of a “hard” case (see Section 3). For “easy” joins, DSM Post-Projection
could use an u/u strategy, thus significantly improving its performance.

5. DSM RADIX -DECLUSTER IN A NSM DBMS
Our results strongly suggest that RDBMS performance can be enhanced by introducing vertical fragmenta-
tion as an accelerator structure, i.e., projection indices [OQ97]. Such a “DSM-subsystem” would profit in
OLAP queries that touch many tuples but few columns, and would preferably use CPU-efficient MonetDB-like
hard-coded operators that manipulate columns at-a-time, such as Positional-Join, Radix-Cluster and Radix-
Decluster. The very purpose of MonetDB’s cache-conscious query processing algorithms is to restrict all
random access to very small ranges that fit the CPU caches. Thus, the only I/O access to the DSM fragments
are sequential bulk reads and writes. On our evaluation platform, our algorithms caused read and write rates
between 200MB/s and 500MB/s, which can be supported using a PCI-X RAID consisting of 12 SCSI disks.5

A case for a DBMS with mixed DSM-NSM storage is made in [RDS02], which also describes how updates
could be accommodated efficiently using differential files to the DSM file images. In such an architecture, a
buffer manager would still be used as an efficient means of well-controlled (asynchronous) I/O. In MonetDB,
however, columns are contiguous arrays, while in an RDBMS the columns would be stored in pages at various
locations of the buffer pool. Therefore, the Radix-Decluster technique of inserting “by position” in the insertion
window would not apply directly. Finding the correct page and offset would be especially difficult if we were to

5Preliminary experiments with lightweight data (de-)compression indicate that a negligible CPU investment can more than half the
needed I/O bandwidth on problems like TPC-H. As I/O bandwidth is precious, this looks a worthwhile approach to help scale DSM to
disk-based scenarios.
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Figure 12: Handling Non-Continuous Addressing and Variable-sized Data

handle variable-sized values such as strings. Figure 12 shows how both problems are solved in a buffer manager
that uses NSM-like pages for storing sequences of variable-size values. Output space has been allocated in a
number of buffer pages, whose start addresses are stored in an index array. First, the Radix-Decluster is
executed, but it does not insert any values, but just records the lengths of the variable-size values in an extra
integer array. This temporary array is, of course, addressable by position. In a second phase, the lengths are
summed to calculate locations. In a third phase, the Radix-Decluster operation is re-executed to copy values
into the result, and this time the correct page and offset for each value can be calculated, using the computed
location accessible by position in the array. Note that for fixed-size values, the extra passes are not even
necessary, and page and offset can be determined from theoid , which is the result tuple sequence number.

6. CONCLUSION

We have investigated the problem of performing large equi-joins with projections in a cache-conscious manner.
As can be seen in the left graph of Figure 10, performance may vary by more than an order of magnitude
with different relation projectivity, thus proving that projection cost can have a strong impact on overall join
efficiency.

Our main contribution, the Radix-Decluster algorithm, is the crucial tool of MonetDB to process (i.e., join,
but also re-order) huge tables with a good access pattern, both in terms of CPU cache access as well as I/O
access (through virtual memory).

In our experiments, we tested various cache-conscious join (projection) strategies both on the NSM and DSM
storage schemes. One important conclusion from these experiments is that Partitioned Hash-Join significantly
improves performance not only for MonetDB and DSM, but also for the NSM pre-projection strategy, as is
used by all standard RDBMS products (compare in Figure 10 the non-cache-friendly “NSM pre-hash” with
“NSM pre-phash”), proving that this algorithm carries generic merit.

The performance evaluation further shows that Radix-Decluster is pivotal in making DSM post-projection
the most efficient overall strategy. We should note, that unlike Radix-Cluster, Radix-Decluster is a single-pass
algorithm, and thus has a scalability limit imposed by a maximum number of clusters and thus tuples. This
limit depends on the CPU cache size and is quite generous (assuming four-byte column values, the 512KB
cache of a Pentium4 Xeon allows to project relations of up to half a billion tuples) and scales quadratically with
the cache size (so the 6MB Itanium2 cache allows for 72 billion tuples).

This limitation also explains why Radix-Decluster is less successful in NSM post-projection, as its scala-
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bility is also inversely quadratically related to the tuple width. Rephrased positively, vertical fragmentation
(DSM) and column-wise execution reduce tuple width, fit more tuples in the CPU cache and quadratically
improve scalability. For NSM, however, we find the “traditional” pre-projection technique to work best, also
outperforming the alternative NSM post-projection strategy of Jive-Join, which was not intended as a generic
join method, but rather for exploiting precomputed join-indices.

As for the prospects of applying DSM Radix-Decluster in off-the-shelf RDBMS products, we support the
case made in [RDS02] for systems that combine DSM and NSM natively, or that simply add DSM to the
normal NSM representation asprojection indices[OQ97], and show how such disk-based systems could use
our Radix-Algorithms through their buffer manager.
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A. COST MODELS

The techniques proposed by Manegold ([MBK02, Man02]) allow us to define cost models for database algo-
rithms by simply describing their data access patterns. For details on how to derive the actual cost functions
from the access pattern descriptions, we refer the interested reader to [MBK02, Man02].

We now shortly recap the access patterns for Radix-Cluster and Partitioned Hash-Join, before we point our
attention to the variants of Positional Join and Radix-Decluster as proposed in this paper. To compare our
Radix-Decluster algorithm with Jive-Join [LR99], we also discuss the access patterns of Jive-Join.

Radix-Cluster During each pass, Radix-Cluster scans the entire input sequentially (“s trav”). On the output
side, theHp = 2Bp clusters are access in a random (“ran”) order, but within each cluster, access is sequential.
Input and output are accessed concurrently, hence we get:

fXjgj
2B

j=1 radix cluster(X;B;P) :

�jPp=1

�
s trav(X)�nest

�
fXjgj

2Bp

j=1;2
Bp;s trav(Xj);ran

��
Partitioned Hash-Join Hash-Join consists of two phases. During the build phase, the entire inner input is
sequentially read while the entire hash table is accessed in random order (“r trav”) when inserting the keys.
During the probe phase, the entire outer input is sequentially read, each key is looked-up in the hash table
(random access, “r acc”), and the output is again written in sequential order. Partitioned Hash-Join perform a
simple Hash-Join for each the 2B pairs of matching clusters, hence:

symbol description

R;X;Y;Z data regions (cf., [MBK02, Man02])

N = jRj length of data regionR [number of data items]

R width of data regionR (size of data items) [bytes]

jjRjj= jRj �R size of data regionR [in bytes]

fRjgj
n
j=1 data regionR clustered inn partitions

W radix-decluster insertion window (a data region)

w= jWj=2B tuples read per cluster per insertion window

#w= jX0j=jWj number of insertion windows

C cache capacity [in bytes]

ω number of attributes in a (base) table

π number of projection attributes in a query

h join hit rate

P number of radix-cluster passes

B;Bp number of radix-bits (total and per pass)

H;Hp number of clusters or partitions (total, per pass)

nest interleaved multi-cursor access

r acc random access

s trav; rs trav single and repetitive sequential traversal

r trav; rr trav single and repetitive random traversal

�;� sequential and concurrent execution

}jpq=1(Pq) � }(P1; : : : ;Pp) � P1} : : :}Pp (} 2 f�;�g)

Table 1: List of Symbols used in Cost Models (cf., [Man02])
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Y0 hashbuild(Y) :

s trav(Y)� r trav(Y0) =: build hash(Y;Y0)

Z hashprobe(X;Y0) :

s trav(X)� r acc(jXj;Y0)� s trav(Z)

=: probe hash(X;Y0;Z)

Z hashjoin(X;Y) :

build hash(Y;Y0)�probe hash(X;Y0;Z)

=: hash join(X;Y;Z)

fZpgj
2B

p=1 part hashjoin(fXpgj
2B

p=1;fYpgj
2B

p=1;B) :

�j2
B

p=1(hash join(Xp;Yp;Zp))

Positional-Join Like the probe phase of Hash-Join, all versions of Positional-Join perform sequential
traversals of both the outer input and the output. In case the (left) input join attribute is already ordered
lookups to the inner (right) input make up a sequential traversal; otherwise, the lookup comprise a random
access on the inner input. The Clustered version processes the clusters one after another, performing Unsorted
Positional-Join on each pair of matching clusters. Hence:

Z unsort pos join(X;Y) :

s trav(X)� r acc(jXj;Y)� s trav(Z)

=: unsort pos join(X;Y;Z)

Z sort pos join(X;Y) :

s trav(X)� s trav(Y)� s trav(Z)

=: sort pos join(X;Y;Z)

fZpgj
2B

p=1 clust pos join(fXpgj
2B

p=1;fYpgj
2B

p=1;B) :

�j2
B

p=1(unsort pos join(Xp;Yp;Zp))

Radix-Decluster For each of the #w insertion windows of the final output, Radix-Decluster sequentially tra-
verses the entireCLUSTBORDERS. During each of the #w iterations, on average (1=#w)-th of each of the 2B clusters
of CLUSTVALUESandCLUSTRESULTare read sequentially. For each cluster, the tuples that fall into the current insertion
window are written to their final position in the output. Effectively, this means, that the insertion windowX0

k
is 2B times traversed in random order, where each traversal touches only (1=2B)-th of X0

k; in other word, each
traversal uses an average access stride of 2B�X. In total, we get:

CLUSTVALUES: fXjgj
2B

j=1



jXj= N;X = 4

�
CLUSTRESULT: fYjgj

2B

j=1



jYj= N;Y = 4

�
CLUSTBORDERS: Z



jZj= 2B;Z = 4

�
fX0

kgj
#w
k=1 radix decluster(fXjgj

2B

j=1;fYjgj
2B

j=1;Z;#w) :

�j#w
k=1

 
�j2

B

j=1

�
s trav(

Xj

#w
)� s trav(

Yj

#w
)

�
� rr trav(2B;X0

k;2
B�X)

!
� rs trav(#w;Z)

Jive-Join With the pre-computed join-index being sorted in order of the RowIds of the left projection table,
the first phase of Jive-Join performs a merge join between the join-index and the left table, scanning both
sequentially. The output of the first phase consists of the left half of the final result and a re-ordered join-index.
Both parts are clustered such that each cluster of the re-ordered join-index contain a consecutive range of the
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RowIds of the right projection table. Hence, the access patterns on both outputs is similar to that of Radix-
Cluster:D
fZpgj

2B

p=1;fY
0

pgj
2B

p=1

E
 left jive join(X;Y;B) :

s trav(X) � s trav(Y)

� nest
�
fZpgj

2B

p=1;2
B;s trav(Zp);ran

�
� nest

�
fY0

pgj
2B

p=1;2
B;s trav(Y0

p);ran
�

For each cluster of the re-ordered join-index, the second phase of Jive-Join then performs a merge-join with
the respective cluster of the left table, traversing both sequentially. To match the order of the left half of the
output, the right half of the output then has to be written in random order:

fZpgj
2B

p=1 right jive join(X;fYpgj
2B

p=1;B) :

�j2
B

p=1(s trav(Xp)� s trav(Yp)� r trav(Zp))


