105 research outputs found
Many-Body Theory of Synchronization by Long-Range Interactions
Synchronization of coupled oscillators on a -dimensional lattice with the
power-law coupling and randomly distributed intrinsic
frequency is analyzed. A systematic perturbation theory is developed to
calculate the order parameter profile and correlation functions in powers of
. For , the system exhibits a sharp
synchronization transition as described by the conventional mean-field theory.
For , the transition is smeared by the quenched disorder, and the
macroscopic order parameter \Av\psi decays slowly with as |\Av\psi|
\propto g_0^2.Comment: 4 pages, 2 figure
Soft and non-soft structural transitions in disordered nematic networks
Properties of disordered nematic elastomers and gels are theoretically
investigated with emphasis on the roles of non-local elastic interactions and
crosslinking conditions. Networks originally crosslinked in the isotropic phase
lose their long-range orientational order by the action of quenched random
stresses, which we incorporate into the affine-deformation model of nematic
rubber elasticity. We present a detailed picture of mechanical quasi-Goldstone
modes, which accounts for an almost completely soft polydomain-monodomain (P-M)
transition under strain as well as a ``four-leaf clover'' pattern in
depolarized light scattering intensity. Dynamical relaxation of the domain
structure is studied using a simple model. The peak wavenumber of the structure
factor obeys a power-law-type slow kinetics and goes to zero in true mechanical
equilibrium. The effect of quenched disorder on director fluctuation in the
monodomain state is analyzed. The random frozen contribution to the fluctuation
amplitude dominates the thermal one, at long wavelengths and near the P-M
transition threshold. We also study networks obtained by crosslinking
polydomain nematic polymer melts. The memory of initial director configuration
acts as correlated and strong quenched disorder, which renders the P-M
transition non-soft. The spatial distribution of the elastic free energy is
strongly dehomogenized by external strain, in contrast to the case of
isotropically crosslinked networks.Comment: 19 pages, 15 EPS figure
Dynamics of orientational ordering in fluid membranes
We study the dynamics of orientational phase ordering in fluid membranes.
Through numerical simulation we find an unusually slow coarsening of
topological texture, which is limited by subdiffusive propagation of membrane
curvature. The growth of the orientational correlation length obeys a
power law with in the late stage. We also discuss
defect profiles and correlation patterns in terms of long-range interaction
mediated by curvature elasticity.Comment: 5 pages, 3 figures (1 in color); Eq.(9) correcte
Viscoelasticity and primitive path analysis of entangled polymer liquids: From f-actin to polyethylene
We combine computer simulations and scaling arguments to develop a unified
view of polymer entanglement based on the primitive path analysis (PPA) of the
microscopic topological state. Our results agree with experimentally measured
plateau moduli for three different polymer classes over a wide rangeof reduced
polymer densities: (i) semi-dilute theta solutions of synthetic polymers, (ii)
the corresponding dense melts above the glass transition or crystallization
temperature, and (iii) solutions of semi-flexible (bio)polymers such as f-actin
or suspensions of rodlike viruses. Together these systems cover the entire
range from loosely to tightly entangled polymers. In particular, we argue that
the primitive path analysis renormalizes a loosely to a tightly entangled
system and provide a new explanation of the successful Lin-Noolandi packing
conjecture for polymer melts.Comment: To appear in J. Chem. Phys
Bacterial biogeography of adult airways in atopic asthma
Abstract
Background
Perturbations to the composition and function of bronchial bacterial communities appear to contribute to the pathophysiology of asthma. Unraveling the nature and mechanisms of these complex associations will require large longitudinal studies, for which bronchoscopy is poorly suited. Studies of samples obtained by sputum induction and nasopharyngeal brushing or lavage have also reported asthma-associated microbiota characteristics. It remains unknown, however, whether the microbiota detected in these less-invasive sample types reflect the composition of bronchial microbiota in asthma.
Results
Bacterial microbiota in paired protected bronchial brushings (BB; n = 45), induced sputum (IS; n = 45), oral wash (OW; n = 45), and nasal brushings (NB; n = 27) from adults with mild atopic asthma (AA), atopy without asthma (ANA), and healthy controls (HC) were profiled using 16S rRNA gene sequencing. Though microbiota composition varied with sample type (p < 0.001), compositional similarity was greatest for BB-IS, particularly in AAs and ANAs. The abundance of genera detected in BB correlated with those detected in IS and OW (r median [IQR] 0.869 [0.748–0.942] and 0.822 [0.687–0.909] respectively), but not with those in NB (r = 0.004 [− 0.003–0.011]). The number of taxa shared between IS-BB and NB-BB was greater in AAs than in HCs (p < 0.05) and included taxa previously associated with asthma.
Of the genera abundant in NB, only Moraxella correlated positively with abundance in BB; specific members of this genus were shared between the two compartments only in AAs. Relative abundance of Moraxella in NB of AAs correlated negatively with that of Corynebacterium but positively with markers of eosinophilic inflammation in the blood and BAL fluid. The genus, Corynebacterium, trended to dominate all NB samples of HCs but only half of AAs (p = 0.07), in whom abundance of this genus was negatively associated with markers of eosinophilic inflammation.
Conclusions
Induced sputum is superior to nasal brush or oral wash for assessing bronchial microbiota composition in asthmatic adults. Although compositionally similar to the bronchial microbiota, the microbiota in induced sputum are distinct, reflecting enrichment of oral bacteria. Specific bacterial genera are shared between the nasal and the bronchial mucosa which are associated with markers of systemic and bronchial inflammation.https://deepblue.lib.umich.edu/bitstream/2027.42/144218/1/40168_2018_Article_487.pd
The Phosphatomes of the Multicellular Myxobacteria Myxococcus xanthus and Sorangium cellulosum in Comparison with Other Prokaryotic Genomes
BACKGROUND: Analysis of the complete genomes from the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum identified the highest number of eukaryotic-like protein kinases (ELKs) compared to all other genomes analyzed. High numbers of protein phosphatases (PPs) could therefore be anticipated, as reversible protein phosphorylation is a major regulation mechanism of fundamental biological processes. METHODOLOGY: Here we report an intensive analysis of the phosphatomes of M. xanthus and S. cellulosum in which we constructed phylogenetic trees to position these sequences relative to PPs from other prokaryotic organisms. PRINCIPAL FINDINGS: PREDOMINANT OBSERVATIONS WERE: (i) M. xanthus and S. cellulosum possess predominantly Ser/Thr PPs; (ii) S. cellulosum encodes the highest number of PP2c-type phosphatases so far reported for a prokaryotic organism; (iii) in contrast to M. xanthus only S. cellulosum encodes high numbers of SpoIIE-like PPs; (iv) there is a significant lack of synteny among M. xanthus and S. cellulosum, and (v) the degree of co-organization between kinase and phosphatase genes is extremely low in these myxobacterial genomes. CONCLUSIONS: We conclude that there has been a greater expansion of ELKs than PPs in multicellular myxobacteria
Regulation of Enteric vapBC Transcription: Induction by VapC Toxin Dimer-Breaking
Toxin-antitoxin (TA) loci encode inhibitors of translation, replication or cell wall synthesis and are common elements of prokaryotic plasmids and chromosomes. Ten TA loci of Escherichia coli K-12 encode mRNases that cumulatively contribute to persistence (multidrug tolerance) of the bacterial cells. The mechanisms underlying induction and reversion of the persistent state are not yet understood. The vapBC operon of Salmonalla enterica serovar Typhimurium LT2 encodes VapC, a tRNase that reversibly inhibits translation by site-specific cleavage of tRNAfMet. VapB is an antitoxin that interacts with and neutralizes VapC via its C-terminal tail and regulate TA operon transcription via its N-terminal DNA binding domain that recognize operators in the vapBC promoter region. We show here that transcription of the vapBC operon of S. enterica is controlled by a recently discovered regulatory theme referred to as ‘conditional cooperativity’: at low T/A ratios, the TA complex binds cooperatively to the promoter region and represses TA operon transcription whereas at high T/A ratios, the excess toxin leads to destabilization of the TA-operator complex and therefore, induction of transcription. We present evidence that an excess of VapC toxin leads to operator complex destabilization by breaking of toxin dimers
The Myxococcus xanthus Two-Component System CorSR Regulates Expression of a Gene Cluster Involved in Maintaining Copper Tolerance during Growth and Development
Myxococcus xanthus is a soil-dwelling member of the δ–Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains.This work has been funded by the Spanish Government (grants CSD2009-00006 and BFU2012-33248, 70% funded by FEDER). This work was also supported by the National Institute of General Medical Science of the National Institutes of Health under award number R01GM095826 to LJS, and by the National Science Foundation under award number MCB0742976 to LJS. JMD and JP received a fellowship from Junta de Andalucía to do some work at University of Georgia
A Novel Mechanism of Programmed Cell Death in Bacteria by Toxin–Antitoxin Systems Corrupts Peptidoglycan Synthesis
Most genomes of bacteria contain toxin–antitoxin (TA) systems. These gene systems encode a toxic protein and its cognate antitoxin. Upon antitoxin degradation, the toxin induces cell stasis or death. TA systems have been linked with numerous functions, including growth modulation, genome maintenance, and stress response. Members of the epsilon/zeta TA family are found throughout the genomes of pathogenic bacteria and were shown not only to stabilize resistance plasmids but also to promote virulence. The broad distribution of epsilon/zeta systems implies that zeta toxins utilize a ubiquitous bacteriotoxic mechanism. However, whereas all other TA families known to date poison macromolecules involved in translation or replication, the target of zeta toxins remained inscrutable. We used in vivo techniques such as microscropy and permeability assays to show that pneumococcal zeta toxin PezT impairs cell wall synthesis and triggers autolysis in Escherichia coli. Subsequently, we demonstrated in vitro that zeta toxins in general phosphorylate the ubiquitous peptidoglycan precursor uridine diphosphate-N-acetylglucosamine (UNAG) and that this activity is counteracted by binding of antitoxin. After identification of the product we verified the kinase activity in vivo by analyzing metabolite extracts of cells poisoned by PezT using high pressure liquid chromatograpy (HPLC). We further show that phosphorylated UNAG inhibitis MurA, the enzyme catalyzing the initial step in bacterial peptidoglycan biosynthesis. Additionally, we provide what is to our knowledge the first crystal structure of a zeta toxin bound to its substrate. We show that zeta toxins are novel kinases that poison bacteria through global inhibition of peptidoglycan synthesis. This provides a fundamental understanding of how epsilon/zeta TA systems stabilize mobile genetic elements. Additionally, our results imply a mechanism that connects activity of zeta toxin PezT to virulence of pneumococcal infections. Finally, we discuss how phosphorylated UNAG likely poisons additional pathways of bacterial cell wall synthesis, making it an attractive lead compound for development of new antibiotics
- …
