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We study the dynamics of orientational phase ordering in fluid membranes. Through numerical simulation
we find an unusually slow coarsening of topological texture, which is limited by subdiffusive propagation of
membrane curvature. The growth of the orientational correlation leagiheys a power lawéect” with w
<1/4 in the late stage. We will also discuss defect profiles and correlation patterns in terms of long-range
interaction mediated by curvature elasticity.
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Fluid membranes exhibit a variety of shape transformastraightforward to include more complicated though realistic
tions due to their flexibility and sensitivity to changes in aspects, such as the stiffness anisotrf}®,16|, nonflat to-
temperature and osmotic pressure. They are most simplgologies[13], and interlayer coupling14,15.
modeled by a structureless deformable surface with bending We consider an initially flat membrane without any over-
energy and a few constraints on its global geoméfry  hang, and describe its profile in the Monge gaugezas
More diverse and prominent deformations occur in mem-=h(r)=h(x,y). The orientational order paramet€;(r)
branes with internal degrees of freedom, especially wher= Qjj(X,y) is a symmetric traceless tensor related to the sca-
they undergo a transition between different thermodynamidar order parameterS and nematic directom; as Qj;
phases. An example is provided by a multicomponent mem=S(n;n;— &;;/2)(i,j =x,y). The model free energy consists
brane in two-phase coexistence, deformation of which i®f three parts which are the homogeneous, Frank, and
controlled by a local coupling between composition and cur<urvature-elastic contributions. Under the assumpt®h|
vature. The equilibrium morphology as well as the dynamics<1, we retain the lowest-order terms with respecVto, as
of phase separation have been addressed in a number of the-
oretical studie$2-9], which have relevance to the so-called
budding and other experimental observations. F:f dr(fnom* fet+feur), (1)

Another class of shape transformations is characterized by
a coupling to an orientational degree of freedom. It repre- A C
sents anisotropic in-plane shape and/or configuration of the fhomz_Qiz. + _(Qi2.)2, 2
constituent molecules. The possibility of quasi-long-range 27040
orientational order has been propo$&@-12 and the result-
ing morphologiegsuch as tubules, sponges, and egg cajtons M )
and defect energetics have been expldfgd-17. A special fr==(4iQj)", (©)
case of this is the nematic ordgt2-16, the presence of
which is suggestefdl 2] in the so-called “gemini” surfactants .

(each of which is a pair of molecules covalently linked at _2 22 O A

their polar heads[18]. It is recently shown that the nematic Fouro =3 (V™4 aBy Qi @
order, in combination with chirality, accounts for the forma-

tion of helical ribbons by the materigl6]. (summation over repeated indices is implietlere, A, C,

In this paper, we address the nematic phase ordering fromndM are the Landau—de Gennes coefficid2], « is the
a dynamical perspective, which has been lacking so far. Vidending rigidity, andx is the coupling constant. Finallf;;
numerical simulation, we show that the coarsening of topois the unit tensor for a nonchiral nematic membrgt# and
logical texture is greatly decelerated by the coupling to memthe totally antisymmetric tensor for a chiral nemaftis).
brane deformation. The growth of texture size is asymptoti+rom now on we will concentrate on nonchiral membranes,
cally characterized by a power law with an exponent lesput discussions are parallel for chiral ones, as we shall see.
than 1/4, instead of the 1/2 for ordinary nematic liquid crys-Neglecting long-range hydrodynamic interactions mediated
tals[19-21. We provide the interpretation of this nonequi- by the solvent, we write the kinetic equations in the form
librium effect. To prepare for this, we also study how the
curvature-orientation coupling controls defects and correla- IQjj SF
tion structure in mechanical equilibrium. Our results follow T Q(ﬂ
from a Ginzburg-Landau model in the simplest setting of a "

flat topology under a weak-coupling condition. It would be )
where(s) denotes the symmetric traceless part, and

(s)
, ©)

*Present address: Department of Physics, Tohoku University, 980- oh oF 202
' ' —-— = —_ = + 0:0::).
8578, Japan. ot Ihgn = ~Ta(VEVIh+adi9;Qy) (6)
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To analyze the initial growth of order parameter upon a @
quench into the nematic phase, we linearize Eg)s(6) with VZ(V2h)=— ~9i9;Qjj - 9)
the aid of the unitary transformation
. This can be solved in the Fourier space &$q)
Q.(a| | cosZ sin2{) Qu(a) () =(alxa)Q. (), substitution of which into Eq(4) gives
Q_(g —sin2{ cosZ || Qyy(q) ' the effective curvature elastic energy as
[=arctariq,/q,). (8) a? dq
v Flon = ZJ 22 )2|Q+(q)|2. (10)
The three eigenmodes are expressed as 7
L It becomes dominant over Frank elasticity when the texture
e.(q=Q.(q)+z [c(q)=e(q)*+4lo/T'y]h(q) size is larger than the characteristic length,
and _eo(q)=Q (q), where c(q)=kq*a+Tq(A A=\kM/a. (11
+Mag?)/(Thaqg?). Their growth ratesy,=d(Iney/dt (a=
+,—,0) read Within this distance from a defect, the optimum configura-
tion Q;;(r) is little affected by the elastic coupling and ap-
1 > 4 proximately minimizes Frank elastic energy. By further as-
7:(A)=5| ~I'o(A+Ma")+1I'h«q suming S= const, n=(cosé,sin#), and the polar coordinate
system (,¢), the approximation giveg26]

+T ozqzwc(q)erﬁ _ _
Elp T, |’ 0=s(¢d— ¢g), @o=const (12

and yo(q) = — T'o(A+Mq?). The spinodal point is located for a defect of indexs located at the origin. The Poisson
at A=0a2/K [12%4] as seeﬁ from the behavior of(q) at equation(9) for mean curvature has the special solution,

smallq.

The nonlinear dynamics of phase ordering is studied by K S cog2(6— )] (s#1),
numerically integrating Eqg5),(6) on a square lattice. We a—SV2h= 2s—2 (13
chooseA=—-1, C=20, M=1, k=20, anda=1 as the 0 (s=1).

standard parameter set, with the mesh aixe=1. The Lan-

dau coefficients give the equilibrium scalar order parameteThis qualitatively explains the mean curvature profile ob-
Seq™ V2|A[/C=0.3 and the defect core sitg, .~ M/|A|  tained by simulation. It also shows that+al/2 defect carries
=1. The large ratiox/M =20 is not unrealistic if we con- much larger bending energy than its antidefect. On the other
sider the large stiffnese~20kgT usually found in biologi- hand, the anisotropic part of the curvature

cal membranes. We impose periodic boundary conditions on

a 512x 512 lattice. For the initial condition, random numbers Hij=di9,h—(V?h/2)5; (14)
uniformly distributed in[—0.1,0.1 are assigned to each . . . o

component ofY;; . The kinetic equations are integrated usingiS Proportional toQ;; in a uniform equilibrated system, and
the Euler scheme withi,=0.1, T';=0.1 and the step incre- the principal curvature axis is parallel to the director. This
mentAt=0.025. Note that the flat membrane approximationnolds also in the coarsening system in the late stage and
breaks down as the texture size exceeds the equilibrium cufXcept in the vicinity of defects, as we confirmed numeri-

vature radius~«/(aS,g). All the data shown below are cally. o _ - .

taken from the time region in whict{Vh|)<0.15 (we de- The long-range elastic interaction also modifies orienta-

note a spatial average Hy- -)). tional correlation at length sca]es !arger thanin the re_al
Shown in Fig. 1 are snapshots of the Schlieren texturéPace, and under the approximati8s:const, Eq.(10) is

QZ,(r) and the mean curvatufé?h(r). In the late stage, the rewritten as

coarsening proceeds via pair annihilation of topological de- b ) )

fects withs=+1/2 and—1/2, wheres is the winding num-  _ern_ _ & S J f drdr,COSZGrel(f,f )+ Orer(r',1) ]

ber for the apolar vectar (or the disclination strengtf26]). curv 167 [r—r'|?

It is seen that a—1/2 defect accompanies three lobes of

positive mean curvature, while-a1/2 defect has one. Where where6,,(r,r’) is the angle between(r) andr’ —r [27]. It

the director points to the defect coré?h is negative(posi-  suggests that orientational correlation is enhanced in the di-

tive) for a +1/2 (— 1/2) defect(respectively. To understand rections parallel and perpendicular to the local director, while

this, we note that the membrane shape in the latest stage pfis suppressed in oblique directions. This can be quantified

coarsening is locally well equilibrated with respect to theby the relative orientation correlation function, which we de-

order parameter configuration. Then, for analysisstatic  fine as

correlation properties, we can assume the mechanical equi-

librium condition §F/sh=0, or Grei(r—r")=(Q;;(NQy;(r+U(n(r))-(r'=r))),

040902-2
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FIG. 1. (Colon Snapshots oQiy(r) on a 128 portion of the
lattice, att=400, 1600, and 6400. The last panel shows the mean 100 1000 10000
curvatureV2h(r) with the director field in short lines. .

time t
whereU(n(r)) is a matrix of rotation that maps(r) onto
& The simulation result in Fig. 2 shows that the expec'“:"qlnes corresponding tw,=0.13 and 0.43 are drawn as guides to

tendency is prominent in the regidn—r’[>\, where cor- e eye. Bottom: the ratio between orientational and curvature cor-

relation in oblique directions is negative. relation lengths. Arrows indicate the time at whig ., |)/(fg)
The coarsening kinetics is monitored through the orienta— 2

tional correlation lengtk¥, which is defined by the correla-
tion  function  Gg([r—r'[)=(Q;j(NQj(r'))  via  decreases from an initial valuew,, and then converges to a
Gq(£q)/Gq(0)=1/2. Similarly, the curvature correlation much smaller valuav,, ast—c. Deviation from the initial
length &, is defined as the half-value decay length ofvalue starts earlier for a stronger coupling. In the intermedi-
Gu(lr=r')=(H;j(NH;(r")). In Fig. 3, the orientational ate stageywq(t) shows an undershoot and even turmns nega-
correlation length is plotted as a function of time. In thetive for most of the parameters we studied. The asymptotic
absence of couplingéq, is well fitted by a power law€g  exponentw., is estimated to be 0.320.02 for «a=2 and
"o with wy=0.43+0.02, in good agreement with the pre- 0.13+0.01 for a=3 [28]. On the other hand, the curvature-
vious result§21,25. Remarkably, the elastic coupling makes coarsening exponenty(t)=d(In &)/d(Int) first decreases
the growth much slower. The instantaneous growth eXpOﬂerjﬁonotonica”y and then converges to the same VEY‘MB
within error bars. In the bottom of the figure, we plot the

FIG. 3. Top: orientational correlation lengéh versus time. The

wo(t)=d(Inég)/d(Int) (19 ratio ¢/¢, which decays to unity after an initial increase. In
the same figure, we indicate the time at which the ratio
Grel o 04— (| feurn|)/(fe) reaches 2. It shows that the two lengths merge
,mm 0'(2) as the curvature-orientational coupling becomes dominant
.:: //j"h“ over Frank elasticity.
0.4 ”’ \\\\\\Qo How does the coupling decelerate coarsening? First, we
0'8 -//'0 note that the effective elastic interacti¢h0) does not pro-
0.2 vide an explanation. In the mechanical equilibrium, the free

energy density,,, is reduced to its homogeneous minimum
except in a region of size-\ around each defect, in which
Frank and curvature elastic energies are balanced. Thus the
£q dependence of,, is that of the defect density 1/§é,
which is also the scaling of Frank elastic enetgycept for

FIG. 2. Relative orientation correlation functidh,(r) att  a logarithmic correction Therefore, the effective elastic in-
=6400 (averaged over 10 independent runs teraction cannot affect the coarsening exponent. This was
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confirmed by an additional simulation that directly imple- nent cannot exceed 1/3. We have performed a simulation
ments the long-range interaction using Fourier transformaincorporating the hydrodynamic interaction by solving Eq.
tion. It shows thati) coarsening curvegy(t) and&(t) are  (6) with T'y(q) above in the Fourier space and transforming
both well fitted by the exponent 0.43 for null coupling)  back each time step to solve E@) in the real space. We
dissipation ratesl(fg)/dt and d(f.,,)/dt are of the same found the coarsening exponesg to be 0.170.03 (for «
order and their ratio is roughly constant in the late stage. =2 andz=1.25), which confirms the weakness of hydro-

Thus we can attribute the origin of slow coarsening to thedynamic accerelation. The details of this simulation will be
dynamics of shape changé). It is subdiffusive and the Presented elsewhere.

source term€4;9;Q;;) is small except near defects. Accord- Second, the mechanism of slow coarsening is unique to
ing to a simple dimension counting, the mean defect separébe membranes with a continuous degree of freedom, and is

tion scales liketo and the time scale of curvature relaxation irrelevant to phase separation dynamics which is described
is proportional togg. If w,,>1/4, the coarsening of curva- by a scalar order parametf6—8|. This has the following

ture field cannot keep up with that of order parameter andéason. In phase separation, significant changes in the order

hencef,, increases. This is energetically disfavored Onceparameter occur only at domain boundaries. However, do-

the coupling becomes dominant over Frank elasticity. ThereX'&N boundaries are aIso the sources C.)f curvatur'e propaga-
tlrgm, as we can see from the corresponding dynamic equation

fore, the.asymptotic exponent can_not exceed %/4' The r€asqdr h. Therefore, the membrane shape can immediately fol-
gg?’evg( 'Taﬁ;(;gnsgﬁlrlg It:a;ritlhlﬁwils Qgrtrgstri)(/)rf'trgple' dAeE)OS' low the composition change. In contrast, the orientational
P 9 the order parameter changes significantly even far from moving

pgndence of Erank _elast.|c energy. In méi mod_el and or- defects. In order to adapt to this, shape deformations spread
dinary nematic fluids in two dimensions, it causes a

logarithmic correction to the power laf29] and the appar- from_ the defects over the whole texture, \.Nh'Ch.'S slow. .

ent exponent is smaller than 1/2 in finite time simulations Flnally we cor_13|der the effect of chirality. With thg anti-

[20,21,23-2% A similar effect is expected for the present symmetric coup]mg t_)etween curvature a@q., a straight-
= SR forward calculation gives the elastic interaction as

case, because the coarsening is still driven by Frank elastic-

ity. a,Z dq
The nonmonotonicity o&q(t) in the intermediate stage Fle= z—f 5

corresponds to the fact that Frank elastic energy is tempo- KJ (2m)

1Q-(a)]%. (16)

rally sacrificed to reduce curvature elastic energy,
initially grown on the smaller scalé,, . Becausef, grows

faster thang, in the initial stage, it is at least necessary that

which hagpe chirality reverses the correlation anisotropy so that the

director correlation is enhanced in oblique directions. How-
ever, the coarsening law is unaltered since the last term in the

Wo<wy holds temporally for the two lengths to finally 1 ambrane’s dynamic equatiof) is still proportional to

merge.

Some remarks are in order. First, hydrodynamic flow of

the solvent effectively modifies the mobility ak,(q)

=1/(47%q) (#n stands for viscosity[1]. However, the curva-

VVQ and sources of curvature propagation are localized
around defects.
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