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We study the dynamics of orientational phase ordering in fluid membranes. Through numerical simulation
we find an unusually slow coarsening of topological texture, which is limited by subdiffusive propagation of
membrane curvature. The growth of the orientational correlation lengthj obeys a power lawj}tw with w
,1/4 in the late stage. We will also discuss defect profiles and correlation patterns in terms of long-range
interaction mediated by curvature elasticity.
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Fluid membranes exhibit a variety of shape transform
tions due to their flexibility and sensitivity to changes
temperature and osmotic pressure. They are most sim
modeled by a structureless deformable surface with ben
energy and a few constraints on its global geometry@1#.
More diverse and prominent deformations occur in me
branes with internal degrees of freedom, especially w
they undergo a transition between different thermodyna
phases. An example is provided by a multicomponent me
brane in two-phase coexistence, deformation of which
controlled by a local coupling between composition and c
vature. The equilibrium morphology as well as the dynam
of phase separation have been addressed in a number o
oretical studies@2–9#, which have relevance to the so-calle
budding and other experimental observations.

Another class of shape transformations is characterize
a coupling to an orientational degree of freedom. It rep
sents anisotropic in-plane shape and/or configuration of
constituent molecules. The possibility of quasi-long-ran
orientational order has been proposed@10–12# and the result-
ing morphologies~such as tubules, sponges, and egg carto!
and defect energetics have been explored@11–17#. A special
case of this is the nematic order@12–16#, the presence o
which is suggested@12# in the so-called ‘‘gemini’’ surfactants
~each of which is a pair of molecules covalently linked
their polar heads! @18#. It is recently shown that the nemat
order, in combination with chirality, accounts for the form
tion of helical ribbons by the material@16#.

In this paper, we address the nematic phase ordering f
a dynamical perspective, which has been lacking so far.
numerical simulation, we show that the coarsening of to
logical texture is greatly decelerated by the coupling to me
brane deformation. The growth of texture size is asympt
cally characterized by a power law with an exponent l
than 1/4, instead of the 1/2 for ordinary nematic liquid cry
tals @19–21#. We provide the interpretation of this nonequ
librium effect. To prepare for this, we also study how t
curvature-orientation coupling controls defects and corre
tion structure in mechanical equilibrium. Our results follo
from a Ginzburg-Landau model in the simplest setting o
flat topology under a weak-coupling condition. It would b
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straightforward to include more complicated though realis
aspects, such as the stiffness anisotropy@10,16#, nonflat to-
pologies@13#, and interlayer coupling@14,15#.

We consider an initially flat membrane without any ove
hang, and describe its profile in the Monge gauge az
5h(r)5h(x,y). The orientational order parameterQi j (r)
5Qi j (x,y) is a symmetric traceless tensor related to the s
lar order parameterS and nematic directorni as Qi j
5S(ninj2d i j /2)(i , j 5x,y). The model free energy consis
of three parts which are the homogeneous, Frank,
curvature-elastic contributions. Under the assumptionu“hu
!1, we retain the lowest-order terms with respect to“h, as

F5E dr~ f hom1 f F1 f curv!, ~1!

f hom5
A

2
Qi j

2 1
C

4
~Qi j

2 !2, ~2!

f F5
M

2
~] iQjk!2, ~3!

f curv5
k

2
~¹2h!21aEi j Qjk] i]kh ~4!

~summation over repeated indices is implied!. Here, A, C,
andM are the Landau–de Gennes coefficients@22#, k is the
bending rigidity, anda is the coupling constant. Finally,Ei j
is the unit tensor for a nonchiral nematic membrane@12# and
the totally antisymmetric tensor for a chiral nematic@16#.
From now on we will concentrate on nonchiral membran
but discussions are parallel for chiral ones, as we shall
Neglecting long-range hydrodynamic interactions media
by the solvent, we write the kinetic equations in the form

]Qi j

]t
52GQS dF

dQi j
D (s)

, ~5!

where~s! denotes the symmetric traceless part, and

]h

]t
52Gh

dF

dh
52Gh~k¹2¹2h1a] i] jQi j !. ~6!0-
©2002 The American Physical Society02-1
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To analyze the initial growth of order parameter upon
quench into the nematic phase, we linearize Eqs.~5!,~6! with
the aid of the unitary transformation

FQ1~q!

Q2~q!
G5F cos 2z sin 2z

2sin 2z cos 2zGFQxx~q!

Qxy~q!
G , ~7!

z5arctan~qy /qx!. ~8!

The three eigenmodes are expressed as

e6~q!5Q1~q!1 1
2 @c~q!6Ac~q!214GQ /Gh#h~q!

and e0(q)5Q2(q), where c(q)5kq2/a1GQ(A
1Mq2)/(Ghaq2). Their growth ratesga5](ln ea)/]t (a5
1,2,0) read

g6~q!5
1

2 F2GQ(A1Mq2)1Ghkq4

6Ghaq2Ac~q!21
4GQ

Gh
G ,

and g0(q)52GQ(A1Mq2). The spinodal point is located
at A5a2/k @12,14# as seen from the behavior ofga(q) at
small q.

The nonlinear dynamics of phase ordering is studied
numerically integrating Eqs.~5!,~6! on a square lattice. We
chooseA521, C520, M51, k520, and a51 as the
standard parameter set, with the mesh sizeDx51. The Lan-
dau coefficients give the equilibrium scalar order parame
Seq;A2uAu/C.0.3 and the defect core sizel core;AM /uAu
51. The large ratiok/M520 is not unrealistic if we con-
sider the large stiffnessk;20kBT usually found in biologi-
cal membranes. We impose periodic boundary conditions
a 5123512 lattice. For the initial condition, random numbe
uniformly distributed in @20.1,0.1# are assigned to eac
component ofQi j . The kinetic equations are integrated usi
the Euler scheme withGQ50.1, Gh50.1 and the step incre
mentDt50.025. Note that the flat membrane approximat
breaks down as the texture size exceeds the equilibrium
vature radius;k/(aSeq). All the data shown below are
taken from the time region in whicĥu“hu&,0.15 ~we de-
note a spatial average by^•••&).

Shown in Fig. 1 are snapshots of the Schlieren text
Qxy

2 (r) and the mean curvature¹2h(r). In the late stage, the
coarsening proceeds via pair annihilation of topological
fects withs511/2 and21/2, wheres is the winding num-
ber for the apolar vectorn ~or the disclination strength@26#!.
It is seen that a21/2 defect accompanies three lobes
positive mean curvature, while a11/2 defect has one. Wher
the director points to the defect core,¹2h is negative~posi-
tive! for a 11/2 (21/2) defect~respectively!. To understand
this, we note that the membrane shape in the latest stag
coarsening is locally well equilibrated with respect to t
order parameter configuration. Then, for analysis ofstatic
correlation properties, we can assume the mechanical e
librium conditiondF/dh50, or
04090
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¹2~¹2h!52
a

k
] i] jQi j . ~9!

This can be solved in the Fourier space ash(q)
5(a/kq2)Q1(q), substitution of which into Eq.~4! gives
the effective curvature elastic energy as

Fcurv
(e f f)52

a2

2kE dq

~2p!2
uQ1~q!u2. ~10!

It becomes dominant over Frank elasticity when the text
size is larger than the characteristic length,

l5AkM /a. ~11!

Within this distance from a defect, the optimum configur
tion Qi j (r) is little affected by the elastic coupling and a
proximately minimizes Frank elastic energy. By further a
sumingS5const, n5(cosu,sinu), and the polar coordinate
system (r ,f), the approximation gives@26#

u5s~f2f0!, f05const ~12!

for a defect of indexs located at the origin. The Poisso
equation~9! for mean curvature has the special solution,

k

aS
¹2h5H s

2s22
cos@2~u2f!# ~sÞ1!,

0 ~s51!.

~13!

This qualitatively explains the mean curvature profile o
tained by simulation. It also shows that a11/2 defect carries
much larger bending energy than its antidefect. On the o
hand, the anisotropic part of the curvature

Hi j 5] i] jh2~¹2h/2!d i j ~14!

is proportional toQi j in a uniform equilibrated system, an
the principal curvature axis is parallel to the director. Th
holds also in the coarsening system in the late stage
except in the vicinity of defects, as we confirmed nume
cally.

The long-range elastic interaction also modifies orien
tional correlation at length scales larger thanl. In the real
space, and under the approximationS5const, Eq.~10! is
rewritten as

Fcurv
(e f f)52

a2S2

16pkE E drdr8
cos 2@u rel~r,r8!1u rel~r8,r!#

ur2r8u2
,

whereu rel(r,r8) is the angle betweenn(r) andr82r @27#. It
suggests that orientational correlation is enhanced in the
rections parallel and perpendicular to the local director, wh
it is suppressed in oblique directions. This can be quanti
by the relative orientation correlation function, which we d
fine as

Grel~r2r8!5^Qi j ~r!Qi j „r1U„n~r!…•~r82r!…&,
2-2
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whereU„n(r)… is a matrix of rotation that mapsn(r) onto
ex . The simulation result in Fig. 2 shows that the expec
tendency is prominent in the regionur2r8u@l, where cor-
relation in oblique directions is negative.

The coarsening kinetics is monitored through the orien
tional correlation lengthjQ which is defined by the correla
tion function GQ(ur2r8u)5^Qi j (r)Qi j (r8)& via
GQ(jQ)/GQ(0)51/2. Similarly, the curvature correlatio
length jH is defined as the half-value decay length
GH(ur2r8u)5^Hi j (r)Hi j (r8)&. In Fig. 3, the orientationa
correlation length is plotted as a function of time. In t
absence of coupling,jQ is well fitted by a power lawjQ
}tw0 with w050.4360.02, in good agreement with the pr
vious results@21,25#. Remarkably, the elastic coupling mak
the growth much slower. The instantaneous growth expon

wQ~ t !5d~ ln jQ!/d~ ln t ! ~15!

FIG. 1. ~Color! Snapshots ofQxy
2 (r) on a 1282 portion of the

lattice, att5400, 1600, and 6400. The last panel shows the m
curvature¹2h(r) with the director field in short lines.

FIG. 2. Relative orientation correlation functionGrel(r) at t
56400 ~averaged over 10 independent runs!.
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decreases from an initial value.w0, and then converges to
much smaller valuew` as t→`. Deviation from the initial
value starts earlier for a stronger coupling. In the interme
ate stage,wQ(t) shows an undershoot and even turns ne
tive for most of the parameters we studied. The asympt
exponentw` is estimated to be 0.1260.02 for a52 and
0.1360.01 fora53 @28#. On the other hand, the curvature
coarsening exponentwH(t)5d(ln jH)/d(ln t) first decreases
monotonically and then converges to the same valuew`

within error bars. In the bottom of the figure, we plot th
ratio jQ /jH which decays to unity after an initial increase.
the same figure, we indicate the time at which the ra
^u f curvu&/^ f F& reaches 2. It shows that the two lengths me
as the curvature-orientational coupling becomes domin
over Frank elasticity.

How does the coupling decelerate coarsening? First,
note that the effective elastic interaction~10! does not pro-
vide an explanation. In the mechanical equilibrium, the fr
energy densityf curv is reduced to its homogeneous minimu
except in a region of size;l around each defect, in which
Frank and curvature elastic energies are balanced. Thus
jQ dependence off curv is that of the defect density}1/jQ

2 ,
which is also the scaling of Frank elastic energy~except for
a logarithmic correction!. Therefore, the effective elastic in
teraction cannot affect the coarsening exponent. This

n

FIG. 3. Top: orientational correlation lengthjQ versus time. The
lines corresponding towQ50.13 and 0.43 are drawn as guides
the eye. Bottom: the ratio between orientational and curvature
relation lengths. Arrows indicate the time at which^u f curvu&/^ f F&
52.
2-3
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confirmed by an additional simulation that directly impl
ments the long-range interaction using Fourier transform
tion. It shows that~i! coarsening curvesjQ(t) andjH(t) are
both well fitted by the exponent 0.43 for null coupling;~ii !
dissipation ratesd^ f F&/dt and d^ f curv&/dt are of the same
order and their ratio is roughly constant in the late stage

Thus we can attribute the origin of slow coarsening to
dynamics of shape change~6!. It is subdiffusive and the
source term (}] i] jQi j ) is small except near defects. Accor
ing to a simple dimension counting, the mean defect sep
tion scales likejQ and the time scale of curvature relaxatio
is proportional tojQ

4 . If w`.1/4, the coarsening of curva
ture field cannot keep up with that of order parameter, a
hencef curv increases. This is energetically disfavored on
the coupling becomes dominant over Frank elasticity. The
fore, the asymptotic exponent cannot exceed 1/4. The re
why w` is even smaller than 1/4 is not very simple. A po
sible explanation is the logarithmic correction to thejQ de-
pendence of Frank elastic energy. In theXY model and or-
dinary nematic fluids in two dimensions, it causes
logarithmic correction to the power law@29# and the appar-
ent exponent is smaller than 1/2 in finite time simulatio
@20,21,23–25#. A similar effect is expected for the prese
case, because the coarsening is still driven by Frank ela
ity.

The nonmonotonicity ofjQ(t) in the intermediate stag
corresponds to the fact that Frank elastic energy is tem
rally sacrificed to reduce curvature elastic energy, which
initially grown on the smaller scalejH . BecausejQ grows
faster thanjH in the initial stage, it is at least necessary th
wQ,wH holds temporally for the two lengths to finall
merge.

Some remarks are in order. First, hydrodynamic flow
the solvent effectively modifies the mobility asGh(q)
51/(4hq) (h stands for viscosity! @1#. However, the curva-
ture dynamics is still subdiffusive and the coarsening ex
04090
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nent cannot exceed 1/3. We have performed a simula
incorporating the hydrodynamic interaction by solving E
~6! with Gh(q) above in the Fourier space and transformi
back each time step to solve Eq.~5! in the real space. We
found the coarsening exponentjQ to be 0.1760.03 ~for a
52 andh51.25), which confirms the weakness of hydr
dynamic accerelation. The details of this simulation will
presented elsewhere.

Second, the mechanism of slow coarsening is unique
the membranes with a continuous degree of freedom, an
irrelevant to phase separation dynamics which is descri
by a scalar order parameter@6–8#. This has the following
reason. In phase separation, significant changes in the o
parameter occur only at domain boundaries. However,
main boundaries are also the sources of curvature prop
tion, as we can see from the corresponding dynamic equa
for h. Therefore, the membrane shape can immediately
low the composition change. In contrast, the orientatio
order parameter changes significantly even far from mov
defects. In order to adapt to this, shape deformations sp
from the defects over the whole texture, which is slow.

Finally we consider the effect of chirality. With the ant
symmetric coupling between curvature andQi j , a straight-
forward calculation gives the elastic interaction as

Fcurv
(e f f)52

a2

2kE dq

~2p!2
uQ2~q!u2. ~16!

The chirality reverses the correlation anisotropy so that
director correlation is enhanced in oblique directions. Ho
ever, the coarsening law is unaltered since the last term in
membrane’s dynamic equation~6! is still proportional to
““Q and sources of curvature propagation are localiz
around defects.
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