296 research outputs found

    Eddy Impacts on the Florida Current

    No full text
    The Gulf Stream in the Atlantic carries warm water northwards and forms both the return closure of the subtropical gyre as well as the upper limb of the meridional overturning circulation. Recent time series recorded east of the Bahamas at 26°N indicate that from May 2009 to April 2011, in contrast with past observations, the northward flowing Antilles Current covaried with the Gulf Stream in the Florida Straits—the Florida Current—even though the Florida and Antilles Currents are separated by banks and islands spanning 150?km. The peak-to-trough amplitude of transport variations during this period was 15?×?106?m3?s?1 for the Florida Current and 12?×?106?m3?s?1 for the Antilles Current, at time scales of 50?days to a year. From satellite observations, we show that the fluctuations in both the Florida and Antilles Currents between May 2009 and April 2011 are driven by eddy activity east of the Bahamas. Since the Florida Current time series is a critical time series for the state of the oceans, and often compared to climate models, this newly identified source of variability needs careful consideration when attributing the variability of the Florida Current to changes in the larger-scale circulations (e.g., gyre and overturning) or wind forcing.<br/

    Strong Mixing and Recirculation in the Northwestern Argentine Basin

    Get PDF
    The Atlantic component of the Meridional Overturning Circulation (AMOC) is a key contributor to the global meridional transport of volume, salt, and heat, and thus plays a central role in global climate. As part of ongoing efforts to monitor the intensity and variability of the AMOC in the South Atlantic, hydrographic sections have been regularly occupied since 2009 near the western boundary along a zonal line at 34.5°S. Here this high-quality, high-resolution data set is analyzed to establish the average hydrographic conditions of the northwestern Argentine Basin and the water mass spatial and temporal variability. The water mass analysis also reveals the pathways of the flow in this region, which are further corroborated by full-depth direct velocity measurements. The repeated hydrographic sections capture an extremely rich vertical structure, characterized by seven distinct water mass layers of northern and southern origin, each with unique property signatures. Almost all of these layers exhibit a sharp zonally banded structure, which is indicative of recirculation cells offshore from the western boundary. The circulation at intermediate levels includes a previously undetected recirculation cell confined very close to the western boundary and superimposed on the classical intermediate water pathway beneath the South Atlantic subtropical gyre. The deep level flow is characterized by the Deep Western Boundary Current (DWBC) and a northward recirculation ~500 km east from the slope.Fil: Valla, Daniel. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Piola, Alberto Ricardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; ArgentinaFil: Meinen, Christopher S.. Atlantic Oceanographic and Meteorological Laboratory; Estados UnidosFil: Campos, Edmo. Universidade de Sao Paulo; Brasi

    Observed Ocean Bottom Temperature Variability at Four Sites in the Northwestern Argentine Basin: Evidence of Decadal Deep/Abyssal Warming Amidst Hourly to Interannual Variability During 2009–2019

    Get PDF
    Consecutive multiyear records of hourly ocean bottom temperature measurements are merged to produce new decade-long time series at four depths ranging from 1,360 to 4,757 m within the northwest Argentine Basin at 34.5°S. Energetic temperature variations are found at a wide range of time scales. All sites exhibit fairly linear warming trends of approximately 0.02–0.04°C per decade over the period 2009–2019, although the trends are only statistically different from zero at the two deepest sites at depths of ~4,500–4,800 m. Near-bottom temperatures from independent conductivity-temperature-depth profiles collected at these same locations every 6–24 months over the same decade show roughly consistent trends. Based on the distribution of spectral energies at the deepest sites and a Monte Carlo-style analysis, sampling at least once per year is necessary to capture the significant warming trends over this decade to within 50% error bars at a 95% confidence limit.Fil: Meinen, Christopher S.. National Ocean And Atmospheric Administration; Estados UnidosFil: Perez, Renellys C.. National Ocean And Atmospheric Administration; Estados UnidosFil: Dong, Shenfu. National Ocean And Atmospheric Administration; Estados UnidosFil: Piola, Alberto Ricardo. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂ­a Naval; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Campos, Edmo. Universidade de Sao Paulo; Brasil. American University Of Sharjah.; Emiratos Árabes Unido

    A prototype system for observing the Atlantic Meridional Overturning Circulation - scientific basis, measurement and risk mitigation strategies, and first results

    Get PDF
    The Atlantic Meridional Overturning Circulation (MOC) carries up to one quarter of the global northward heat transport in the Subtropical North Atlantic. A system monitoring the strength of the MOC volume transport has been operating since April 2004. The core of this system is an array of moored sensors measuring density, bottom pressure and ocean currents. A strategy to mitigate risks of possible partial failures of the array is presented, relying on backup and complementary measurements. The MOC is decomposed into five components, making use of the continuous moored observations, and of cable measurements across the Straits of Florida, and wind stress data. The components compensate for each other, indicating that the system is working reliably. The year-long average strength of the MOC is 18.7±5.6 Sv, with wind-driven and density-inferred transports contributing equally to the variability. Numerical simulations suggest that the surprisingly fast density changes at the western boundary are partially linked to westward propagating planetary wave

    Production Technology and Competitiveness In the Hungarian Manufacturing Industry

    Get PDF
    Following the big transformations of the 1990s, enterprise structure and technological level seem to have become stabilised in Hungary. Under these circumstances it is especially interesting to identify the elements responsible for competitiveness in general, and the role technology plays in development in particular, according to managers experienced in production and marketing. This empirical study – based on in-depth interviews and field research – summarises characteristics of the technological level in the sectors examined, role of technology and labour in production, effects of foreign direct investment, relations between competition and firm-level factors determining competitiveness, and concludes by summing up those most frequently mentioned proposals that should be incorporated into economic policy according to managers. Main findings indicate that more qualified, more intensive and cheaper labour can be substituted for high technology. The competitiveness of an enterprise is not determined by technology alone, but rather by a combination of technology, the parameters of available labour and the costs of investment increasing productivity. The insufficiency of inter-company relations, together with a shortage of available assets necessary for investment constitute the major threat undermining the competitiveness of enterprises in present-day Hungary

    The present and future system for measuring the Atlantic meridional overturning circulation and heat transport

    Get PDF
    of the global combined atmosphere-ocean heat flux and so is important for the mean climate of the Atlantic sector of the Northern Hemisphere. This meridional heat flux is accomplished by both the Atlantic Meridional Overturning Circulation (AMOC) and by basin-wide horizontal gyre circulations. In the North Atlantic subtropical latitudes the AMOC dominates the meridional heat flux, while in subpolar latitudes and in the subtropical South Atlantic the gyre circulations are also important. Climate models suggest the AMOC will slow over the coming decades as the earth warms, causing widespread cooling in the Northern hemisphere and additional sea-level rise. Monitoring systems for selected components of the AMOC have been in place in some areas for decades, nevertheless the present observational network provides only a partial view of the AMOC, and does not unambiguously resolve the full variability of the circulation. Additional observations, building on existing measurements, are required to more completely quantify the Atlantic meridional heat transport. A basin-wide monitoring array along 26.5°N has been continuously measuring the strength and vertical structure of the AMOC and meridional heat transport since March 31, 2004. The array has demonstrated its ability to observe the AMOC variability at that latitude and also a variety of surprising variability that will require substantially longer time series to understand fully. Here we propose monitoring the Atlantic meridional heat transport throughout the Atlantic at selected critical latitudes that have already been identified as regions of interest for the study of deep water formation and the strength of the subpolar gyre, transport variability of the Deep Western Boundary Current (DWBC) as well as the upper limb of the AMOC, and inter-ocean and intrabasin exchanges with the ultimate goal of determining regional and global controls for the AMOC in the North and South Atlantic Oceans. These new arrays will continuously measure the full depth, basin-wide or choke-point circulation and heat transport at a number of latitudes, to establish the dynamics and variability at each latitude and then their meridional connectivity. Modeling studies indicate that adaptations of the 26.5°N type of array may provide successful AMOC monitoring at other latitudes. However, further analysis and the development of new technologies will be needed to optimize cost effective systems for providing long term monitoring and data recovery at climate time scales. These arrays will provide benchmark observations of the AMOC that are fundamental for assimilation, initialization, and the verification of coupled hindcast/forecast climate models

    Uniformiteit van het uitgangsmateriaal bij aardbei: Leidt het selecteren van stekken tot een meer uniforme productie?

    Get PDF
    Al jaren zijn telers en vermeerderaars op zoek naar manieren om de grote verschillen in productie van aardbeienplanten te verkleinen. Het ligt voor de hand dat een teelt starten met uniforme stekken zou leiden tot een uniformere productie. Daarom zijn voor dit onderzoek 9 partijen stekken geselecteerd, variërend in positie aan de stolon, leeftijd en stekmoment. Deze stekken werden opgekweekt tot trayplanten en na een koelperiode in de kas geplaatst. Van iedere afzonderlijke plant werd het aantal en gewicht van de geoogste aardbeien bepaald. Uiteindelijk bleek dat de variatie in de productie voor alle partijen even groot was; alle partijen waren even gelijkmatig. Dat betekent dat het selecteren van stekken geen invloed heeft op de uniformiteit van de productie. Blijkbaar is er een ander proces dat variatie in bloemaanleg en vruchtproductie oplevert in de periode tussen steksnijden en uiteindelijke productie

    The fate of the Deep Western Boundary Current in the South Atlantic

    No full text
    The pathways of recently ventilated North Atlantic Deep Water (NADW) are part of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). In the South Atlantic these pathways have been the subject of discussion for years, mostly due to the lack of observations. Knowledge of the pathways of the AMOC in the South Atlantic is a first order prerequisite for understanding the fluxes of climatically important properties. In this paper, historical and new observations, including hydrographic and oxygen sections, Argo data, and chlorofluorocarbons (CFCs), are examined together with two different analyzes of the Ocean general circulation model For the Earth Simulator (OFES) to trace the pathway of the recently ventilated NADW through the South Atlantic. CLIVAR-era CFCs, oxygen and salinity clearly show that the strongest NADW pathway in the South Atlantic is along the western boundary (similar to the North Atlantic). In addition to the western boundary pathway, tracers show an eastward spreading of NADW between ~17 and 25°S. Analyzed together with the results of earlier studies, the observations and model output presented here indicate that after crossing the equator, the Deep Western Boundary Current (DWBC) transports water with the characteristics of NADW and a total volume transport of approximately 14Sv (1Sv=106m3s-1). It crosses 5°S as a narrow western boundary current and becomes dominated by eddies further south. When this very energetic eddying flow reaches the Vitória-Trindade Ridge (~20°S), the flow follows two different pathways. The main portion of the NADW flow continues along the continental shelf of South America in the form of a strong reformed DWBC, while a smaller portion, about 22% of the initial transport, flows towards the interior of the basin

    On-line monitoring van transpiratie en fotosynthese: de praktijk

    Get PDF
    WUR Glastuinbouw heeft monitoren ontwikkeld voor de on-line bepaling van de verdamping en fotosynthese. Deze monitoren zijn uitgetest bij diverse vruchtgroentetelers en slatelers. In het onderzoek is ook een nieuwe transpiratiemonitor ontwikkeld, op basis van een statische energie- en vochtbalan
    • 

    corecore