3,110 research outputs found

    Characterization of granite matrix porosity and pore-space geometry by in situ and laboratory methods

    Get PDF
    Most available studies of interconnected matrix porosity of crystalline rocks are based on laboratory investigations; that is, work on samples that have undergone stress relaxation and were affected by drilling and sample preparation. The extrapolation of the results to in situ conditions is therefore associated with considerable uncertainty, and this was the motivation to conduct the ‘in situ Connected Porosity' experiment at the Grimsel Test Site (Central Swiss Alps). An acrylic resin doped with fluorescent agents was used to impregnate the microporous granitic matrix in situ around an injection borehole, and samples were obtained by overcoring. The 3-D structure of the pore-space, represented by microcracks, was studied by U-stage fluorescence microscopy. Petrophysical methods, including the determination of porosity, permeability and P-wave velocity, were also applied. Investigations were conducted both on samples that were impregnated in situ and on non-impregnated samples, so that natural features could be distinguished from artefacts. The investigated deformed granites display complex microcrack populations representing a polyphase deformation at varying conditions. The crack population is dominated by open cleavage cracks in mica and grain boundary cracks. The porosity of non-impregnated samples lies slightly above 1 per cent, which is 2-2.5 times higher than the in situ porosity obtained for impregnated samples. Measurements of seismic velocities (Vp) on spherical rock samples as a function of confining pressure, spatial direction and water saturation for both non-impregnated and impregnated samples provide further constraints on the distinction between natural and induced crack types. The main conclusions are that (1) an interconnected network of microcracks exists in the whole granitic matrix, irrespective of the distance to ductile and brittle shear zones, and (2) conventional laboratory methods overestimate the matrix porosity. Calculations of contaminant transport through fractured media often rely on matrix diffusion as a retardation mechanis

    Right ventricular outflow tract velocity time integral-to-pulmonary artery systolic pressure ratio: a non-invasive metric of pulmonary arterial compliance differs across the spectrum of pulmonary hypertension.

    Get PDF
    Pulmonary arterial compliance (PAC), invasively assessed by the ratio of stroke volume to pulmonary arterial (PA) pulse pressure, is a sensitive marker of right ventricular (RV)-PA coupling that differs across the spectrum of pulmonary hypertension (PH) and is predictive of outcomes. We assessed whether the echocardiographically derived ratio of RV outflow tract velocity time integral to PA systolic pressure (RVOT-VTI/PASP) (a) correlates with invasive PAC, (b) discriminates heart failure with preserved ejection-associated PH (HFpEF-PH) from pulmonary arterial hypertension (PAH), and (c) is associated with functional capacity. We performed a retrospective cohort study of patients with PAH (n = 70) and HFpEF-PH (n = 86), which was further dichotomized by diastolic pressure gradient (DPG) into isolated post-capillary PH (DPG \u3c 7 mmHg; Ipc-PH, n = 54), and combined post- and pre-capillary PH (DPG ≥ 7 mm Hg; Cpc-PH, n = 32). Of the 156 patients, 146 had measurable RVOT-VTI or PASP and were included in further analysis. RVOT-VTI/PASP correlated with invasive PAC overall (ρ = 0.61, P \u3c 0.001) and for the PAH (ρ = 0.38, P = 0.002) and HFpEF-PH (ρ = 0.63, P \u3c 0.001) groups individually. RVOT-VTI/PASP differed significantly across the PH spectrum (PAH: 0.13 [0.010-0.25] vs. Cpc-PH: 0.20 [0.12-0.25] vs. Ipc-PH: 0.35 [0.22-0.44]; P \u3c 0.001), distinguished HFpEF-PH from PAH (AUC = 0.72, 95% CI = 0.63-0.81) and Cpc-PH from Ipc-PH (AUC = 0.78, 95% CI = 0.68-0.88), and remained independently predictive of 6-min walk distance after multivariate analysis (standardized β-coefficient = 27.7, 95% CI = 9.2-46.3; P = 0.004). Echocardiographic RVOT-VTI/PASP is a novel non-invasive metric of PAC that differs across the spectrum of PH. It distinguishes the degree of pre-capillary disease within HFpEF-PH and is predictive of functional capacity

    Extraction of thermal and electromagnetic properties in 45Ti

    Full text link
    The level density and gamma-ray strength function of 45Ti have been determined by use of the Oslo method. The particle-gamma coincidences from the 46Ti(p,d gamma)45Ti pick-up reaction with 32 MeV protons are utilized to obtain gamma-ray spectra as function of excitation energy. The extracted level density and strength function are compared with models, which are found to describe these quantities satisfactorily. The data do not reveal any single-particle energy gaps of the underlying doubly magic 40Ca core, probably due to the strong quadruple deformation

    Reversible suppression of an essential gene in adult mice using transgenic RNA interference

    Get PDF
    RNAi has revolutionized loss-of-function genetics by enabling sequence-specific suppression of virtually any gene. Furthermore, tetracycline response elements (TRE) can drive expression of short hairpin RNAs (shRNAs) for inducible and reversible target gene suppression. Here, we demonstrate the feasibility of transgenic inducible RNAi for suppression of essential genes. We set out to directly target cell proliferation by screening an RNAi library against DNA replication factors and identified multiple shRNAs against Replication Protein A, subunit 3 (RPA3). We generated transgenic mice with TRE-driven Rpa3 shRNAs whose expression enforced a reversible cell cycle arrest. In adult mice, the block in cell proliferation caused rapid atrophy of the intestinal epithelium which led to weight loss and lethality within 8-11 d of shRNA induction. Upon shRNA withdrawal, villus atrophy and weight loss were fully reversible. Thus, shRpa3 transgenic mice provide an interesting tool to study tissue maintenance and regeneration. Overall, we have established a robust system that serves the purpose of temperature-sensitive alleles in other model organisms, enabling inducible and reversible suppression of essential genes in a mammalian system

    Charged particle decay of hot and rotating 88^{88}Mo nuclei in fusion-evaporation reactions

    Get PDF
    A study of fusion-evaporation and (partly) fusion-fission channels for the 88^{88}Mo compound nucleus, produced at different excitation energies in the reaction 48^{48}Ti + 40^{40}Ca at 300, 450 and 600 MeV beam energies, is presented. Fusion-evaporation and fusion-fission cross sections have been extracted and compared with the existing systematics. Experimental data concerning light charged particles have been compared with the prediction of the statistical model in its implementation in the Gemini++ code, well suited even for high spin systems, in order to tune the main model parameters in a mass region not abundantly covered by exclusive experimental data. Multiplicities for light charged particles emitted in fusion evaporation events are also presented. Some discrepancies with respect to the prediction of the statistical model have been found for forward emitted α\alpha-particles; they may be due both to pre-equilibrium emission and to reaction channels (such as Deep Inelastic Collisions, QuasiFission/QuasiFusion) different from the compound nucleus formation.Comment: 14 pages, 14 figure

    Impact of Decmedetomidine on Opioid and Benzodiazepine Dosing Requirements in Children.

    Get PDF
    Poster presented at: Annual Update on Pediatric Cardiovascular Disease; February 2008; Scottsdale Arizona

    QuantiFERON®-TB gold in-tube performance for diagnosing active tuberculosis in children and adults in a high burden setting.

    Get PDF
    To determine whether QuantiFERON®-TB Gold In-Tube (QFT) can contribute to the diagnosis of active tuberculosis (TB) in children in a high-burden setting and to assess the performance of QFT and tuberculin skin test (TST) in a prospective cohort of TB suspect children compared to adults with confirmed TB in Tanzania. Sensitivity and specificity of QFT and TST for diagnosing active TB as well as indeterminate QFT rates and IFN-γ levels were assessed in 211 TB suspect children in a Tanzanian district hospital and contrasted in 90 adults with confirmed pulmonary TB. Sensitivity of QFT and TST in children with confirmed TB was 19% (5/27) and 6% (2/31) respectively. In adults sensitivity of QFT and TST was 84% (73/87) and 85% (63/74). The QFT indeterminate rate in children and adults was 27% and 3%. Median levels of IFN-γ were lower in children than adults, particularly children <2 years and HIV infected. An indeterminate result was associated with age <2 years but not malnutrition or HIV status. Overall childhood mortality was 19% and associated with an indeterminate QFT result at baseline. QFT and TST showed poor performance and a surprisingly low sensitivity in children. In contrast the performance in Tanzanian adults was good and comparable to performance in high-income countries. Indeterminate results in children were associated with young age and increased mortality. Neither test can be recommended for diagnosing active TB in children with immature or impaired immunity in a high-burden setting

    Neutrino Interactions in Hot and Dense Matter

    Get PDF
    We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star.Comment: 41 pages, 25 figure

    Particle-hole state densities with non-equidistant single-particle levels

    Get PDF
    The correct use of energy-dependent single-particle level (s.p.l.) densities within particle-hole state densities based on the equidistant spacing model (ESM) is analysed. First, an analytical expression is obtained following the convolution of energy-dependent excited-particle and hole densities. Next, a comparison is made with results of the ESM formula using average s.p.l. densities for the excited particles and holes, respectively. The Fermi-gas model (FGM) s.p.l. densities calculated at the corresponding average excitation energies are used in both cases. The analysis concerns also the density of particle-hole bound states. The pairing correlations are taken into account while the comparison of various effects includes the exact correction for the Pauli exclusion principle. Quantum-mechanical s.p.l. densities and the continuum effect can also match a corresponding FGM formula, suitable for use within the average energy-dependent partial state density in multistep reaction models.Comment: 29 pages, ReVTeX, 11 postscript figures, submitted to Phys.Rev.
    corecore