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RNAi has revolutionized loss-of-function genetics by enabling
sequence-specific suppression of virtually any gene. Furthermore,
tetracycline response elements (TRE) can drive expression of short
hairpin RNAs (shRNAs) for inducible and reversible target gene
suppression. Here, we demonstrate the feasibility of transgenic
inducible RNAi for suppression of essential genes. We set out to
directly target cell proliferation by screening an RNAi library
against DNA replication factors and identified multiple shRNAs
against Replication Protein A, subunit 3 (RPA3). We generated
transgenic mice with TRE-driven Rpa3 shRNAs whose expression
enforced a reversible cell cycle arrest. In adult mice, the block in
cell proliferation caused rapid atrophy of the intestinal epithelium
which led to weight loss and lethality within 8–11 d of shRNA
induction. Upon shRNA withdrawal, villus atrophy and weight loss
were fully reversible. Thus, shRpa3 transgenic mice provide an in-
teresting tool to study tissue maintenance and regeneration. Over-
all, we have established a robust system that serves the purpose
of temperature-sensitive alleles in other model organisms, en-
abling inducible and reversible suppression of essential genes in
a mammalian system.

RNAi transgenics | gene targeting | mouse genetics |
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Loss-of-function experiments reveal the biological function of
a gene of interest through the phenotype that results from its

deficiency. The most dramatic phenotype is lethality, defining
a gene as essential. Although such a striking phenotype places
essential genes among the most interesting, it also renders them
the most difficult class of genes to study. First, null alleles must
be maintained as a heterozygous stock. Second, in homozygotes,
the role of the gene can be studied only in the developmental
stages preceding lethality. Thus, any function the gene might play
later in development remains unknown. Additionally, the ab-
sence of a gene throughout development may induce compen-
satory shifts in related pathways, confounding the interpretation
of results (1).
In simple model organisms, temperature-sensitive mutants

isolated in forward genetic screens are crucial to studying es-
sential genes. These lines can be maintained at permissive tem-
perature, and simply shifting to restrictive temperature reveals
the mutant phenotype. Thus, essential genes can be acutely and
transiently inactivated at any stage in development.
Although such tools are not available in mouse models, con-

ditional deletion alleles in which the gene of interest is flanked by
loxP recombination sites enable acute gene inactivation upon
expression of Cre recombinase. Expression of Cre from tissue-
specific promoters yields gene deletion in a restricted compart-
ment, whereas the use of tamoxifen-inducible Cre alleles allows
precise timing of recombination. However, these approaches
require costly and time-consuming generation of customized
targeting cassettes and production of ES cells by homologous
recombination. Also, Cre-mediated gene excision is incomplete,
and the efficiency of excision varies with respect to the size of the
targeted cassette (2). Furthermore, continuous expression of Cre
can have genotoxic and/or mutagenic side effects, potentially
confounding the interpretation of results, especially when studying
DNA damage or metabolism (3–5). Most importantly, conditional

gene deletion is not reversible, so these models cannot be used to
determine the effect of transient gene inactivation, during win-
dows of development or in the adult.
In recent years, RNAi has enabled fast and versatile loss-of-

function studies in mammalian cells through transient transfec-
tion of synthetic small interfering RNAs or transduction of viral
vectors that drive stable or inducible expression of shRNAs. In
a transgenic setting, shRNA expression alleles recapitulate knock-
out mouse phenotypes when constitutively or inducibly ex-
pressed, thus providing an alternative to Cre-mediated gene
deletion (6–14). Importantly, shRNAs under the control of the
reversible tetracycline-responsive element (TRE) allow both
inducible gene knockdown and rapid reactivation (15, 16).
Moreover, shRNA transgenesis is faster than generation of
conventional and conditional knockouts because it obviates the
need for site-specific homologous recombination, and, because
RNAi suppresses gene function in trans, only a single transgenic
allele is necessary, thus reducing animal husbandry. Therefore,
we envisaged inducible RNAi transgenics as an effective tool
to dissect the role of essential genes in mice.
We recently developed a rapid, scalable platform for the

generation of inducible shRNA transgenic mice and used it to
study suppression and reactivation of tumor suppressor genes,
whose inactivation promotes cancer development (17). Here, we
address the challenge of targeting essential genes, a unique set-
ting where expression of the shRNA could be deleterious,
enforcing selective pressure against induction of the transgene.
To determine whether this system would be sufficiently robust to
induce lethal phenotypes and thus accurately assess essential
gene function, we chose to inhibit an essential process by RNAi:
DNA synthesis. Our results show that transgenic RNAi targeting
the DNA replication machinery causes widespread inhibition of
cell proliferation in adult mice, and thus dramatic phenotypes
arise in highly proliferative tissues. More generally, our results
establish a robust and versatile platform to study virtually any
essential gene in mice.

Results
shRNAs Targeting RPA Strongly Inhibit Cell Proliferation. An shRNA
screen was conducted in HCT116 colorectal carcinoma cells to
identify genes involved in DNA synthesis that were sensitive to
RNAi inhibition. A library of 254 shRNAs targeting genes with
either established or suspected roles in DNA replication was
cloned into a retroviral construct in the context of a human miR-
30 transcript. For each shRNA, cells were transduced, selected
with puromycin, and counted 5 d following transduction. Many
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shRNAs were identified that reduced cell number more than
twofold compared with controls, including multiple shRNAs
targeting PES1 and the RPA complex (Fig. 1 A–C). PES1
encodes a protein implicated in cell cycle progression and ribo-
some biogenesis (18, 19). RPA is the heterotrimeric single-
stranded DNA binding complex that stabilizes replication forks by
coating melted DNA; the RPA complex also binds ssDNA at sites
of DNA damage and recruits cell cycle checkpoint kinases
(reviewed in refs. 20 and 21). Two anti-proliferative shRNAs
targeting the smallest RPA subunit, RPA3, induce degradation of
all three members of the RPA complex, whereas RPA1 shRNA
knocks down only its target (Fig. S1A). We chose to use RPA3
shRNAs in further studies because of its well characterized roles
in DNA replication and repair and because its sole suppression
destabilized the entire RPA complex. To study Rpa3 knockdown
in transgenic mice, shRNAs were cloned that potently targeted
mouse Rpa3 (Fig. S1B).

TREtight Prevents Sterility in shRpa3 Founder Mice. To facilitate the
fast and reproducible generation of shRNA transgenic mice, we
used a recently developed targeting cassette that enables effi-
cient integration of an inducible shRNA transgene at a defined
genomic locus (17, 22). This targeting vector consists of a miR-
30-based shRNA embedded in the 3′ UTR of a GFP transcript
downstream of the inducible TRE-CMV promoter (TRE; Fig.
S1C). In this configuration, fluorescence reports the level of in-
duction of the shRNA transcript.
Following electroporation of the targeting vector and a plas-

mid expressing Flpe recombinase into KH2 ES cells (22),
recombinase-mediated cassette exchange promotes integration
of the TRE-GFP-miR/shRNA (TGM) cassette into a defined
locus downstream of the collagen A1 gene (ColA1; ref. 17). In
addition to the ColA1 homing cassette, KH2 cells are also
transgenic at the Rosa26 locus where a modified reverse tetra-

cycline transactivator coding sequence (rtTA-M2) is knocked in
downstream of the endogenous Rosa26 promoter (22, 23). rtTA
drives strong reversible expression from the TRE promoter in
the presence of the tetracycline analog doxycycline (dox) (24),
allowing immediate testing of TRE function in targeted ES cells.
Using this system, one weak (shRpa3.429) and one potent

(shRpa3.455) shRNA against mouse Rpa3 were targeted to the
ColA1 locus. As expected, dox treatment of each targeted clone
induced strong GFP expression and knockdown of Rpa3, effects
that were reversed when dox was withdrawn (Fig. S1B). Next, fully
transgenic mice were generated by injecting these ES cells into
tetraploid blastocysts. The resulting animals developed normally,
but only transgenics harboring the weak TG-shRpa3.429 were fer-
tile. Although the ES cells showed no GFP expression or Rpa3
knockdown in the absence of dox (Fig. S1B), we hypothesized that
the sterility in strong TG-shRpa3.455 founders was caused by low
levels of the shRpa3 inhibiting meiotic recombination during germ-
line development, because Rpa is required for recombination.
Furthermore, ES cells harboring inducible shRNAs targeting many
nonessential genes yielded viable founder lines (17).
To circumvent this issue, the shRNA targeting construct was

modified to contain a TREtight promoter (Tt), which shows 40-
fold lower expression in the absence of dox than the conventional
TRE promoter (25). The GFP spacer was also changed to a fast-
maturing fluorescent protein (turboRFP; herein cited as tRFP)
for rapid fluorescent detection of induction, to yield the final
Tt-tRFP-miR/shRNA (TtRM) cassette. Additionally, a second
strong Rpa3 shRNA was identified through a high-throughput
assay of shRNA potency described elsewhere (26), and thus KH2
ES cells were targeted with two different potent Rpa3 shRNAs
(shRpa3.455 and shRpa3.561) or a potent shRNA against firefly
luciferase (shLuci) in TtRM. Again, tRFP was strongly induced
by dox and reported concomitant Rpa3 knockdown in shRpa3-
targeted ES cells, and both tRFP level and knockdown were
quickly reversed upon dox withdrawal (Fig. 2A Left). These cells
were used for tetraploid blastocyst complementation and yielded
fertile founder lines, suggesting that TREtight prevented delete-
rious leaky expression of shRpa3.

Transgenic Rosa26-rtTA;TtR-shRpa3 MEFs Reversibly Arrest in Dox. As
a first step in characterizing the functional consequences of Rpa3
inhibition in transgenic cells, mouse embryonic fibroblasts
(MEFs) were isolated from embryos transgenic for both Rosa26-
rtTA-M2 (Rosa-rtTA) and TtRM (23, 25) and examined for Rpa3
expression and proliferation in the absence or presence of dox. A
4-d pulse of dox treatment resulted in rapid, reversible induction
of tRFP in all cells, along with Rpa3 knockdown in shRpa3MEFs,
but not shLuci MEFs (Fig. 2A Right). Accordingly, Rosa-rtTA;
shRpa3 MEFs arrested after 4 d in dox (Fig. 2B), whereas those
grown in the absence of dox continued to multiply similar to
shLuci controls. Dox treatment did not result in a significant in-
crease in apoptotic cells (Fig. S2). This defect in proliferation was
completely reversible, as arrested cells resumed proliferation
within days of dox withdrawal, eventually proliferating as rapidly
as untreated controls (Fig. 2C).
To further characterize the nature of the shRpa3-induced cell

cycle arrest, MEFs were BrdU-pulsed and analyzed by flow
cytometry after 0, 2, 4, or 6 d of dox treatment. Cell cycle analysis
of Rosa-rtTA;shRpa3 MEFs showed an accumulation of BrdU-
negative cells with greater than 2C DNA content upon dox
treatment, indicative of arrest in S phase (Fig. 2 D and E). In
these cells, dox treatment induced phosphorylation of Chk2, but
did not lead to a strong induction of gamma-H2A.X, indicating
that the cell cycle arrest caused by Rpa3 knockdown is not the
result of a DNA damage-induced cell cycle checkpoint caused by
stalled replication (Fig. 2F).
To determine whether shRNA-mediated Rpa3 suppression was

sufficient to interfere with checkpoint signaling, Rosa-rtTA;
shRpa3 MEFs were treated with hydroyurea (HU) or ionizing
radiation (IR). In the absence of dox, both HU and IR strongly
induced phosphorylation of Chk1, Chk2, and H2A.X (Fig. 2F). In
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Fig. 1. High-throughput RNAi screen identifies shRNAs that inhibit cell
proliferation. (A) A library of 254 shRNAs targeting 83 known and putative
replication factors was used to transduce HCT116 cells. Cells were selected in
puromycin for 4 d, then counted to determine shRNA effects on cell pro-
liferation. Cell number is normalized to cultures transduced with negative
control shRNAs targeting EBNA1 or luciferase. Values corresponding to two
RPA3 shRNAs are highlighted in blue. (B) Growth curve of cells transduced
with two shRNAs targeting RPA3 or luciferase. (C) Hairpins that reduce
HCT116 cell number greater than twofold.
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cells treated with dox for 4 d before HU or IR, Chk1 phosphor-
ylation was abrogated, whereas Chk2 and H2A.X phosphorylation
were unaffected. These data demonstrate that Rpa3 knockdown
can impede Chk1 signaling, consistent with previous work showing
that the Rpa complex is required for recruitment and activation of
ATR kinase at sites of DNA damage (27, 28). Thus, inducible
knockdown of Rpa in vitro recapitulates known loss of function
phenotypes, demonstrating that our system is suitable for further
characterization of this and other essential genes.

Adult CMV-rtTA;Rosa-rtTA;shRpa3 and Rosa-rtTA+/+;shRpa3 Mice
Exhibit Rapid Weight Loss Upon Dox Treatment. A key advantage
of inducible shRNA transgenics targeting essential genes is to
bypass embryonic lethality and examine the impact of inducible
gene knockdown at later stages of development or in the adult.
Consistent with the ongoing need for cell proliferation during
embryogenesis, bitransgenic Rosa-rtTA;TtR-shRpa3 animals died
shortly after birth when treated with dox in utero. Surprisingly, if
Rosa-rtTA;TtR-shRpa3 mice were treated with dox at adulthood
(6 wk of age), no overt phenotype was observed. Notably, fluo-
rescent reporter expression was much lower in adults than in em-
bryos and substantially more tissue-restricted, suggesting that this
discrepancy might arise from insufficient shRNA expression rather
than a reduced requirement for Rpa3 in the adult. When shRpa3
mice were crossed to the CMV-rtTA strain (24) and treated with
dox at 6 wk of age, fluorescence was observed in more widespread
tissues but still no obvious phenotype resulted. However, when mice
were triple transgenic CMV-rtTA;Rosa-rtTA;shRpa3 or Rosa-
rtTA;Rosa-rtTA;shRpa3 (Rosa-rtTA+/+;shRpa3), shRNA induc-
tion by dox treatment led to cell cycle arrest and caused rapid
weight loss, even in the case of weak shRpa3.429 (Fig. 3).
Although shRpa3-induced weight loss led to death in most

cases, some mice regained weight and survived while continu-
ously treated with dox (Fig. S3 A and B). Only mice with strong
Rpa3 shRNAs that were homozygous for Rosa-rtTA (Rosa-
rtTA+/+;TtR-shRpa3) never survived dox treatment at 6 wk of
age (Fig. S3A). We hypothesized that less penetrant phenotypes
could be due to weak or mosaic shRNA expression, which would
lead to the outgrowth of cells that did not efficiently induce the
shRNA (see also ref. 29). Consistent with this notion, Rosa-
rtTA+/+ mice show higher expression of tRFP than Rosa-rtTA+/−

in many tissues, as well as expression in a greater number of cells
per tissue than Rosa-rtTA+/− (Fig. S4A). Furthermore, multiple
tissues of Rosa-rtTA;TtR-shRpa3 and CMV-rtTA;Rosa-rtTA;
TtR-shRpa3 mice that survived long-term dox treatment were less
tRFP-positive than those in treated shLuci counterparts (Fig. S4 B
and C), suggesting that selection occurs against shRpa3 expression
but not against neutral shLuci. Therefore, the expression pattern
of the tet-transactivator, and in turn, the TRE-driven shRNA,
influences the extent of phenotype in this system.

shRpa3 Induces Severe Intestinal Villus Atrophy and a Transient
Hematopoietic Defect in Rosa26-rtTA+/+;TtR-shRpa3 Mice. To exam-
ine the effect of Rpa3 knockdown on adult mice, we further
characterized the most robust phenotype in detail. Rosa-rtTA+/+;
TtR-shRpa3 mice consistently lost weight after 3–5 d of dox food
and became moribund around day 8 (Fig. 4A). Control Rosa-
rtTA+/+;TtR-shLuci mice continued to gain weight at a rate typ-
ical of 6-wk-old animals. Dramatic total weight loss was accom-
panied by moderate decrease in size and weight of individual
organs such as the liver, kidneys, and spleen (Fig. S5A).
To determine which systems were most likely affected by

shRNA expression in Rosa-rtTA+/+;TtR mice, we assessed tRFP
fluorescence throughout the body. Based on tRFP levels, Rosa-
rtTA+/+ drove TRE expression in many tissues including skin,
bone marrow, spleen and pancreas, but levels were highest in the
intestine. Accordingly, histology revealed the rapid degeneration
of the intestinal epithelium in Rosa-rtTA+/+;TtR-shRpa3 mice
over the time course of dox treatment (Fig. 4C). Immunohisto-
chemistry for tRFP shows strong expression of the tRFP-shRNA
cassette by day 3 on dox (Fig. 4C). Rpa3 knockdown in the in-
testine is observed by 5 d on dox, as was a reduction in pro-
liferating cells and BrdU incorporation (Fig. 4 B–D and Fig. S6 A
and B). By day 7, intestinal architecture is severely disrupted, and
Ki67-positive cells are reduced by fourfold (Fig. 4 C and D).
Rpa3 shRNA did not cause a significant increase in apoptotic
cells in the intestine (Fig. S6C). Importantly, this effect was not
due to overexpression of an exogenous miR, as the expression of
a luciferase shRNA had no effect on intestinal proliferation or
architecture (Fig. 4 C and D and Fig. S6 A and B). Two in-
dependent Rpa3 shRNAs show the same effect, ruling out off-
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target effects of a single shRNA (Fig. 4 C and D and Figs. S5A
and S6 A and B).
In the bone marrow of Rosa-rtTA+/+;TtR-shRpa3 mice, ery-

throid precursors are severely depleted after 3 d on dox food
compared with shLuci controls (Fig. 4E). This effect is transient
and does not lead to a significant anemia in the periphery. Also,
no significant change in overall BrdU incorporation was observed
in the bone marrow. We hypothesized that the transience of this
phenotype might be due to compensation by cells that fail to ex-
press the shRNA cassette. In the bone marrow of control shLuci
mice, 35–67% cells were tRFP-positive. Consistent with a rapid
selection against shRpa3 expression, tRFP-positive cells were
relatively depleted in the bone marrow of shRpa3 mice treated
with dox (8–26%, Fig. 4F). Thus, the fluorescent reporter can be
used as a read-out of cell-autonomous effects of knockdown in
tissues where expression of the tRFP-shRNA transcript is mosaic.

Weight Loss and Villus Atrophy in Rosa-rtTA+/+;TtR-shRpa3 Mice Are
Reversible. Because shRpa3-induced cell cycle arrest was rever-
sible in vitro, we aimed to determine whether the effects of
shRpa3 expression were reversible in vivo, and if dox withdrawal
could rescue weight loss and tissue defects in this model. There-
fore, 6-wk-old Rosa-rtTA+/+;TtR-shRpa3 mice were treated with
a 3-d pulse of dox food and then returned to a dox-free diet. These
mice exhibited a delay in weight gain relative to shLuci controls
and mild weight loss but eventually regained weight at a rate

similar to controls (Fig. 5A). In CMV-rtTA;Rosa-rtTA;TG-
shRpa3.429 mice, which could be left on dox longer (10 d), a more
marked weight loss and subsequent regain was observed upon dox
withdrawal (Fig. S7).
Again, we extended our characterization of this recovery in the

most penetrant Rosa-rtTA+/+;TtR-shRpa3 model. Here, 5 d after
beginning dox treatment (2 d after dox withdrawal), the intestinal
epithelium showed moderate atrophy and loss of proliferating
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Fig. 4. shRpa3 induction in Rosa-rtTA+/+;TtR-shRpa3 mice causes weight
loss, cell cycle arrest, and atrophy of the intestinal epithelium. (A) Weight
loss/gain in Rosa26-rtTA+/+;TtRM mice treated with dox food at 6 wk of age.
(B) Immunoblot of intestinal epithelial cells from Rosa26-rtTA+/+;TtRM mice
treated with dox for 5 d. Lysates from two different mice for each shRNA are
shown. (C) Histology and immunohistochemistry on intestines of 6-wk-old
Rosa26-rtTA+/+;TtRM mice treated with dox for 0, 3, 5, or 7 d. (D) Quantifi-
cation of intestinal Ki67 staining. Each time point shown represents the
mean of three mice. Error bars are SD. *P < 0.05, compared with untreated
shRpa3.455 mice. (E) Histology of bone marrow from Rosa26-rtTA+/+;TtRM
mice treated with dox for 3 d. shRpa3 marrow shows a marked decrease in
dark-staining erythroid precursors compared with shLuci. (F) Quantification
of tRFP-positive cells in bone marrow of Rosa-rtTA+/+;TtRM mice treated with
dox. (Values from 3-, 5-, or 7-d dox are combined.) *P < 0.0005.
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cells similar to that in mice treated with dox continually for 5 d
(Figs. 4C and 5C). By 7 d after dox withdrawal, tRFP expression
was diminished (Fig. 5C), demonstrating extinguished TRE-tight
expression. At this time point, mice had recovered a normal
number of proliferating cells in the intestine and normal tissue
architecture, and liver, kidney, and spleen weights were compa-
rable to controls (Fig. 5 B and C and Fig. S5B). Thus, the effects of
Rpa3 knockdown were fully reversible upon shRpa3 withdrawal.
Hence, our system shows that transient inactivation of the repli-
cation gene Rpa3 causes a reversible inhibition of DNA synthesis
but is not invariably lethal, thus providing a system to study this
essential process at different developmental stages and, through
the use of tissue specific tranactivators, in particular cell types.
More broadly, our study provides a platform and blueprint to
suppress and reactivate any essential gene in vivo.

Discussion
Here, we establish that an inducible RNAi transgenic system is
useful to study genes that are essential in adult tissues. By tar-
geting cell proliferation, we showed that this system is sufficiently
robust to examine deleterious phenotypes induced by knock-
down. Importantly, we used a fluorescent protein encoded on the
same transcript as the shRNA to tightly report the level of
shRNA induction at single cell resolution. This feature highlights
which tissues are most likely to exhibit a phenotype caused by
knockdown and aids in the interpretation of negative results by
providing a simple test of whether the shRNA was expressed. In
future studies, the reporter could even be used to study cell-
autonomous effects of knockdown by examining only the fluo-
rescent cells in tissues where shRNA expression is variegated.

Still, many applications of inducible shRNA transgenics re-
quire knockdown throughout the tissue of interest. Here, we
observed that CMV-rtTA;Rosa-rtTA;shRpa3 mice sometimes
regained weight and survived following an initial weight loss,
suggesting that a small number of cells that fail to induce or
actively silence rtTA or TRE expression can compensate for
arrested cells in which shRNA expression is maintained. Ac-
cordingly, analysis of the intestines of surviving mice for the
shRNA-linked fluorescence reporter indicated that they con-
sisted largely of nonfluorescent cells. Hence, moving forward,
more transactivator strains that drive high levels of truly ubiq-
uitous expression from the TRE must be developed. Our group
has already generated a superior strain to Rosa-rtTA for driving
shRNA expression in widespread adult tissues (17); one allele of
this transgene, which drives expression of an optimized rtTA
(rtTA3) from the CMV early enhancer/chicken β actin (CAG)
promoter is sufficient to induce weight loss and death in com-
bination with either a strong or weak shRpa3.
Rpa3 knockdown in CMV-rtTA;Rosa-rtTA;shRpa3 mice dis-

rupted the intestine more than any other tissue; this is likely due to
both (i) strong and penetrant expression of the shRNA cassette
and (ii) the high rate of cell turnover in this tissue. Because
shRNA led to lethality in only 8 d in this model, other tissues
might also be dramatically affected by shRNA expression over
a longer time scale. The construction of our system allows shRNA
transgenic mice to be crossed to tissue-specific transactivators to
examine the effect of inducible knockdown in restricted com-
partments. Again, although numerous tissue-specific trans-
activator strains exist, many drive mosaic TRE expression within
the tissue of interest, so a fluorescent reporter is also indispensable
in these backgrounds. As improved ubiquitous and tissue-specific
transactivators are developed, dox delivery and TRE accessibility
may also be limiting to shRNA expression in some tissues.
The strong antiproliferative effect of shRPA3 was evident in

a library of shRNAs targeting DNA replication and cell cycle
regulated genes in the cancer cell line HCT116. This may be
because RPA is required for DNA replication, DNA repair, and
cell cycle checkpoint processes (21). Consistent with this finding,
ribonucleotide reductase (RRM1) is also involved in all three
processes and was also identified in the screen. Thus, directly
targeting the many roles of RPA is a powerful genetic means to
cause reversible cell cycle arrest that does not lead to apoptosis. In
transgenics, this provides an interesting tool to study normal tissue
maintenance at any stage of development and, with a transient
pulse of knockdown, the process of tissue regeneration. For these
applications, shRpa3 mice are an interesting complement to
existing cell lineage ablation technologies, such as diphtheria toxin
or toxin receptor expression (30–32). Targeting other essential
genes will require careful assessment of shRNA potency because
shRNAs against subunits of the Origin Recognition Complex re-
quired > 90% knockdown of protein levels to prevent prolife-
ration of HCT116 cells.
More broadly, transient inactivation of essential genes in the

whole organism is an exciting prospect for mouse genetics. On
a practical level, our platform can be modified through simple
cloning to target any gene, leading to transgenic mice within ∼4
mo, up to three times faster than standard gene targeting
approaches. More importantly, the ability to toggle gene expres-
sion at any developmental stage and examine the outcome later in
development is a major advance over conditional gene deletion,
which is not reversible. A systemic pulse of gene knockdown is
also the closest genetic approximation to a single treatment with
a targeted small molecule-based therapy that incompletely
inhibits gene function. Thus, this system will be invaluable for
testing the efficacy and side effects of inhibiting novel therapeutic
targets. In general, this level of genetic malleability brings mouse
genetics forward to meet that of other model organisms, which
have long used temperature-sensitive mutations to this end.
Adding a new layer of versatility, the sequence-specific nature of
RNAi allows the rational targeting of any gene of interest indu-
cibly and reversibly.
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Materials and Methods
RNAi Screening. shRNAs from Open Biosystems were subcloned into a pu-
romycin-selectable retroviral expression vector (for cloning details, please see
SI Text). HCT116 cells were transduced with viral supernatant produced by
amphotropic phoenix packaging cells and replated into selection media
(DMEM supplemented with 10% FBS containing 1.5 μg/mL puromycin). After
24 h, cells were replated in media containing puromycin and were counted
after another 96 h. To confirm shRpa3 effects, HCT116 cells transduced with
pLM-puro-shRpa3 or shLuci.203 were plated at 100,000 cells per well in a six-
well plate in media containing 1.5 μg/mL puromycin, and one well of cells was
resuspended and counted each day after plating.

Transgenic Alleles and in Vivo Dox Treatment. Mouse shRpa3.455 was
obtained from Open Biosystems in pSM2. shRpa.429 was designed using the
BIOPREDsi prediction algorithm (33). shRpa3.561 was identified through
a tiling assay to identify potent shRNAs (26). shLuci.1309 was provided by
Gregory Hannon (Cold Spring Harbor Laboratory). All shRNAs were subcl-
oned into the targeting vectors by digestion with XhoI and EcoRI, and
sequences are listed in Table S1. All transgenic strains used are listed in Table
S2. Mice were fed food containing dox (625 mg/kg; Harlan Laboratories).
Embryos were treated in utero by feeding pregnant females dox food at
embryonic day 15–17.

Cell Culture. KH2 ES cells were cultured and electroporated according to
protocols modified from (22); also see SI Text. For Western blot samples,
targeted ES cells were maintained in 50 μg/mL hygromycin and 2.5 μg/mL
puromycin. MEFs were harvested and as described (34), and cultured in low-
oxygen conditions (1.5% O2) in DMEM with 10% FBS, 50 μg/mL hygromycin
and 2.5 μg/mL puromycin. Growth curves were performed by serially plating
150,000 cells in one well of a six-well plate. All dox-containing media were
prepared at 1 μg/mL dox (Sigma-Aldrich).

Annexin V Staining and Cell Cycle Analysis. APC-conjugated Annexin V (BD
Biosciences) was used according to the manufacturer’s specifications. For cell
cycle analysis, MEFs were pulsed with BrdU at 10 μM for 4 h and sub-
sequently stained with APC-conjugated BrdU antibody (BD Biosciences) and
DAPI. Flow cytometry was performed on a LSRII cell analyzer (Becton Dick-
inson) and processed with FlowJo analysis software (TreeStar).

Immunoblots. Antibodies used were Rpa3 (M-18, Santa Cruz Biotechnology),
tRFP (Evrogen), β-actin (AC-15; Sigma-Aldrich), Chk1 (DCS-310; Santa Cruz
Biotechnology), phospho-Chk1 (133D3; Cell Signaling Technology), Chk2
(611570; BD Biosciences), and gamma-H2A.X (#2577; Cell Signaling Tech-
nology). Also see SI Text.

Immunostaining. Antigen retrieval was performed in Trilogy buffer (Cell
Marque) according to manufacturer’s protocol. Immunohistochemistry was
performed using the Epitomics ACE detection kit. Primary antibodies used
were: Ki67 (rabbit anti-mouse; Dianova), tRFP (Evrogen), and cleaved caspase
3 (#9661; Cell Signaling).
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