26 research outputs found

    Improved Photoelectrochemical Performance Of Cu(In,Ga)Se2 Thin Films Prepared By Pulsed Electrodeposition

    Get PDF
    Solar cells based on polycrystalline Cu(In,Ga)Se2 absorber layers have yielded the highest conversion efficiency among all the thin-film technologies. CIGS thin-films possess large optical absorption coefficient (≈105 cm-1) and a suitable bandgap of ≈ 1.20 eV for an ideal stoichiometry of CuIn0.7Ga0.3Se2. In the present study, Direct Current (DC) and Pulsed Current (PC) electrodeposition techniques are employed to obtain the near ideal stoichiometric CIGS thin-films on a Mo foil using a two electrode system at a constant potential. Deposited films are annealed at 550 °C under Ar atmosphere. Characterization of the annealed CIGS films is performed using SEM-energy dispersive X-ray spectroscopy, X-ray diffraction, Raman spectroscopy, and photoelectrochemistry to study the morphology, stoichiometry, phase constitution, and the photoelectrochemical response. PC deposition offered suitable manipulation of various parameters, which has helped in obtaining a better quality stoichiometric single phase chalcopyrite structured CIGS thin films with the elimination of unwanted secondary phases like Cu2-xSe. An improved photoelectrochemical performance, characteristic of a p-type semiconductor, is observed for the PC deposited CIGS film

    Pulsed electrodeposition of Cuinse2 thin films with morphology for solar cell applications

    Get PDF
    Copper indium diselenide (CuInSe2) films have been prepared by pulse electrodeposition technique on Molybdenum substrate followed by post-deposition annealing at 550°C. Optimization of pulse parameters by varying the pulse duration (duty cycle) in order to achieve high quality films has been reported. Appropriate manipulation of pulse parameters has resulted in a novel flake-like crystallite morphology and better control over the composition of individual elements. The CIS thin films were comprehensively characterized using SEM-EDS, FIB, XRD and UV-DRS to study their morphology, phase constitution, etc. and PEC (photoelectrochemistry) measurements were also carried out to ascertain the photoelectrochemical performance of the CIS absorber layer. The bandgap of the CIS films was determined to be 1.02 eV. The flake like crystallite morphology observed in CIS thin films under the optimized processing conditions was found to yield enhanced cathodic photoresponse under solar simulated light with a photocurrent density of 20 μA/cm2 (observed at a potential of -0.6 V vs. SCE). The films exhibited a photoresponse typical of a p-type semiconducto

    CuIn1-xGaxSe2 thin-film absorber layers for solar photovoltaics fabricated by two-stage pulsed current electrodeposition

    Get PDF
    Single phase polycrystalline Copper Indium Gallium Diselenide (CIGS) thin-films for solar photovoltaic applications were fabricated by an economical two-stage method of Pulsed Current (PC) electrodeposition. Cu, Ga and Se were first co-deposited onto a Mo foil followed by deposition of In. The as-deposited films were annealed in Argon atmosphere at 550 C for 30 min and were further characterized to study their morphology, phase constitution, and optical absorption. The results revealed that the films have a compact morphology and are comprised of a crystalline chalcopyrite single phase CIGS. The bandgap of the CIGS films was found to be 1.27 eV from absorption studies. The photoelectrochemical studies revealed the p-type nature of CIGS films with improved photocurrent over that obtained for one-stage PC electrodeposited CIGS thin-film

    Photoelectrochemistry of Cu(In,Ga)Se2 thin-films fabricated by sequential pulsed electrodeposition

    Get PDF
    A novel approach for the fabrication of compact stoichiometric copper indium gallium selenium (CIGS) thin-films is reported. It uses a solution of CuCl2, GaCl3 and H2SeO3, pH adjusted with HCl with LiCl as additive employing a high purity graphite plate anode and Mo sputtered glass cathode during a simplified sequential pulsed current electrodeposition which avoids impurities from the use of a reference electrode during deposition and a separate selenization step. A Cu-Ga-Se film is optimally deposited by optimizing the deposition voltage, followed by deposition of In from InCl3 solution, and then annealing of the Cu-Ga-Se/In thin-film in an Argon atmosphere at 550 °C. A single phase chalcopyrite CIGS forms with a compact morphology and well-controlled composition of individual elements. The flat-band potential and carrier density of CIGS thin-films are −0.15 V and 2.6 × 1016 cm−3, respectively, as determined by Mott–Schottky studies. The photoelectrochemical performance of CIGS films shows a photocurrent density of −0.8 mA cm−2 at −0.4 V vs. SCE, an eight fold increment compared to our previous reported value. This simplified preparation using pulse plating gives superior quality CIGS films which are promising for application in thin-film solar cells and photoelectrochemical cells

    Electrodeposition of CuGaSe2 and CuGaS2 thin films for photovoltaic applications

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10008-016-3237-0.Abstract CuGaSe2 and CuGaS2 polycrystalline thin film absorbers were prepared by one-step electrodeposition from an aqueous electrolyte containing CuCl2, GaCl3 and H2SeO3. The pH of the solution was adjusted to 2.3 by adding HCl and KOH. Annealing improved crystallinity of CuGaSe2 and further annealing in sulphur atmosphere was required to obtain CuGaS2 layers. The morphology, topography, chemical composition and crystal structure of the deposited thin films were analysed by scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy and X-ray diffraction, respectively. X-Ray diffraction showed that the asdeposited CuGaSe2 film exhibited poor crystallinity, but which improved dramatically when the layers were annealed in forming gas atmosphere for 40 min. Subsequent sulphurization of CuGaSe2 films was performed at 400 °C for 10 min in presence of molecular sulphur and under forming gas atmosphere. The effect of sulphurization was the conversion of CuGaSe2 into CuGaS2. The formation of CuGaS2 thin films was evidenced by the shift observed in the X-ray diffraction pattern and by the blue shift of the optical bandgap. The bandgap of CuGaSe2 was found to be 1.66 eV, while for CuGaS2 it raised up to 2.2 eV. A broad intermediate absorption band associated to Cr and centred at 1.63 eV was observed in Cr-doped CuGaS2 films.This work was supported by Ministerio de Economia y Competitividad (ENE2013-46624-C4-4-R) and Generalitat Valenciana (Prometeus 2014/044). One of the authors (S. Ullah) acknowledges the European Union (IDEAS-Call-3, Innovation and Design for Euro-Asian scholars) for its financial support.Ullah, S.; Mollar García, MA.; Marí, B. (2016). Electrodeposition of CuGaSe2 and CuGaS2 thin films for photovoltaic applications. Journal of Solid State Electrochemistry. 20(8):2251-2257. https://doi.org/10.1007/s10008-016-3237-0S22512257208Calixto ME, Sebastian PJ, Bhattacharya RN, Noufi (1999) Sol Energ Mat Sol C 59:75–84Mandati S, Sarada BV, Dey SR, Joshi SV (2015) J Power Sources 273:149–157Jacobsson TJ, Fjällström V, Edoff M, Edvinsson T (2015) Sol Energ Mat Sol C 134:185–193Carrete A, Placidi M, Shavel A, Pérez Rodríguez A, Cabot A (2015) Phys Stat Sol (a) 212:67–71Saji VS, Ik-Ho C, Lee CW (2011) Sol Energy 86:2666–2678Park MG, Ahn SJ, Yun JH, Gwak J, Cho A, Ahn SK, Shin K, Nam D, Cheong H, Yoon K (2012) J Alloy Compd 513:68–74Saji VS, Lee SM, Lee CW (2011) J Korean Electrochem Soc 14:61–70Donglin X, Jangzhuang L, Man X, Xiujian Z (2008) J Non-Cryst Solids 354:1447–1450Araujo J, Ortíz R, López-Rivera A, Ortega JM, Montilla M, Alarcón D (2007) J Solid State Electroch 11(Issue 3):407–412Palacios P, Sanchez K, Conesa JC, Fernandez JJ, Wahnon P (2007) Phys Stat Sol A 203:1395–1401Palacios P, Sanchez K, Conesa JC, Wahnon P (2006) Thin Solid Films 515:6280–6284Lee H, Lee J-H, Hwang Y-H, Kim Y (2014) Curr Appl Phys 14:18–22Kim D, Kwon Y, Lee D, Yoon S, Lee S, Yoo B (2015) J Electrochem Soc 162:D36–D41Hou WW, Bob B, Li S, Yang Y (2009) Thin Solid Films 517:6853–6856Lee J, Lee W, Shrestha NK, Lee DY, Lim I, Kang SH, Nah YC, Lee SH, Yi W, Han SH (2014) Mater Chem Phys 144:49–54Yang JY, Lee D, Huh K, Jung SJ, Lee JW, Lee HC, Baek DH, Kim BJ, Kim D, Nam J, Kim GY, Jo W (2015) RSC Adv 5:40719–407257Sall T, Nafidi A, Marí B, Mollar M, Hartiti B, Fahoume M (2014) J Semicond 35:0630021–0630025Lee JH, Song WC, Yi JS, Joonyang K, Han WD, Hawang J (2003) Thin Solid Films 431-432:349–353Prabukanthan P, Dhanasekaran R (2007) Cryst Growth Des 7:618–623Guillemoles JF, Cowache P, Lusson A, Fezzaa K, Boisivon F, Vedel J, Lincot D (1996) J Appl Phys 79:7293–7302Aguilera I, Palacios P, Wahon P (2010) Sol Energ Mat Sol C 94:1903–1906Palacios P, Aguilera I, Wahnón P, Conesa JC (2008) J Phys Chem C 112:9525–952

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Artificial Intelligent in China and United States

    Full text link
    The development of Information Technology has the power to make a computer think and act like a human being. Artificial intelligence is a special feature of information technology that involves developing a machine that works and responds like a human mind. The main features of artificial intelligence take into account the sensitivity of human senses. The system is able to recognize speech and touch as features set in the system to carry out the tasks of a normal state of health without human assistance. However, the wisdom of implanting the study of intelligent agents who take the environment and achieve their goal successfully. In the computer world. Most systems are designed to achieve objectives depending on the nature of the situation but on the use of special features derived from existing natural features of humans and animals. In general, an engagement thinker is a human relative who uses learning and problem-solving techniques to understand high levels of activity in human-inspired activity, the emotional process and decision-making. Architects are technically superior to human ingenuity, past and present exploratory research conducted extensively in China and the United States and a series of developments in line with future aspirations or technologies

    Enhanced photoresponse of Cu(In,Ga)Se2 /CdS heterojunction fabricated using economical non-vacuum methods

    No full text
    The present study demonstrates the fabrication of a CIGS/CdS heterojunction with enhanced photoelectrochemical performance using low-cost non-vacuum methods. A simplified economical pulse electrodeposition technique, with a two-electrode system in an additive-free electrolyte, has been used for the preparation of chalcopyrite Cu(In,Ga)Se2 (CIGS) thin-films avoiding the selenization process and CdS subsequently chemical bath deposited onto these CIGS films. Photoelectrochemical (PEC) performance of bare CIGS and the CIGS/CdS heterojunction has been investigated in conventional Na2SO4 electrolyte under chopped solar simulated light. The PEC analysis reveals nearly twenty-fold increase in the photoresponse of the CIGS/CdS heterojunction compared to bare CIGS films. The CIGS/CdS junction has also been tested in a PEC cell using a novel sulphide/sulphite electrolyte for the first time and found to yield further enhancement in photocurrent density with exceptional stability. Thus, apart from fabrication of an efficient CIGS/CdS heterojunction economically, the present study proposes use of a novel electrolyte yielding superior performance and showing potential for commercialization of CIGS devices and their use in photoelectrochemical cells
    corecore