
1 

 

 
 

 
 

Photoelectrochemistry of Cu(In,Ga)Se2 thin-films fabricated by 

sequential pulsed electrodeposition 

Sreekanth Mandatia, b, Bulusu V. Saradaa, , Suhash R. Deyb, , Shrikant V. Joshia 

a Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, 

Hyderabad 500005, Telangana, India 
b Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Yeddumailaram, Telangana 

502205, India 

 

Journal of Power Sources 
Volume 273, 1 January 2015, Pages 149–157 

 

http://dx.doi.org/10.1016/j.jpowsour.2014.09.036 
 

 This is author version pre-print archived in the official Institutional Repository of IIT-H 

www.iith.ac.in 

 

Photoelectrochemistry of Cu(In,Ga)Se2 Thin-Films 

Fabricated by Sequential Pulsed Electrodeposition 

Sreekanth Mandatia,b,*, Bulusu  V. Saradaa,#, Suhash R. Deyb,#, Shrikant V. Joshia 

1 Centre for Solar Energy Materials, International Advanced Research Centre for powder 

Metallurgy and New Materials (ARCI), Balapur, Hyderabad – 500005, Telangana, India. 

2 Department of Materials Science and Metallurgical Engineering, Indian Institute of 

Technology Hyderabad, Yeddumailaram-502205, Telangana, India. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Archive of Indian Institute of Technology Hyderabad

https://core.ac.uk/display/38678565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jpowsour.2014.09.036
http://www.iith.ac.in/


2 

 

 

*Corresponding Author: ms11p1003@iith.ac.in   

#Co-corresponding authors: sarada@arci.res.in and suhash@iith.ac.in  

 

Abstract 

A novel approach for the fabrication of compact stoichiometric copper indium gallium selenium 

(CIGS) thin-films is reported. It uses a solution of CuCl2, GaCl3 and H2SeO3, pH adjusted with 

HCl with LiCl as additive employing a high purity graphite plate anode and Mo sputtered glass 

cathode during a simplified sequential pulsed current electrodeposition which avoids impurities 

from the use of a reference electrode during deposition and a separate selenization step. A Cu-

Ga-Se film is optimally deposited by optimizing the deposition voltage, followed by deposition 

of In from InCl3 solution, and then annealing of the Cu-Ga-Se/In thin-film in an Argon 

atmosphere at 550 °C. A single phase chalcopyrite CIGS forms with a compact morphology and 

well-controlled composition of individual elements. The flat-band potential and carrier density of 

CIGS thin-films are -0.15 V and 2.6 × 1016 cm-3, respectively, as determined by Mott-Schottky 

studies. The photoelectrochemical performance of CIGS films shows a photocurrent density of -

0.8 mA/cm2 at -0.4 V vs. SCE, an eight fold increment compared our previous reported value. 

This simplified preparation using pulse plating gives superior quality CIGS films which are 

promising for application in thin-film solar cells and photoelectrochemical cells.  

 

KEYWORDS: Cu(In,Ga)Se2 thin-films; pulsed current; sequential electrodeposition; 

photocurrent; photoelectrochemical cells 
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1.0 Introduction 

Cu(In,Ga)Se2 (CIGS) thin-films are one of the most promising absorber layers for solar cell 

applications due to their direct bandgap (≈ 1.20 eV) and large optical absorption coefficient (≈ 

105 cm-1) and have yielded highest conversion efficiencies among the thin-film technologies at 

laboratory scale [1-13]. Efforts to seek an economical and scalable method for the production of 

stoichiometric CIGS thin-films have been ongoing to realize the commercialization of these 

devices. Several non-vacuum based methods, including electrochemical [14-19], electroless- [20] 

and chemical bath depositions [21], have been explored for this purpose. Among these methods, 

electrodeposition has demonstrated to produce CIGS devices with high efficiency [22]. This 

method is easily amenable for achieving large area films of high quality with efficient material 

utilization and high rate deposition [17, 22]. Conventional electrodeposition, with application of 

direct current (DC) employing a three electrode system, has been explored by several researchers 

for the production of CIGS thin-films. However, complexing agents such as EDTA, trisodium 

citrate, sodium sulfamate, etc. are generally used to control the composition and to improve the 

morphology of CIGS thin-films [22-24]. In addition, multi-step processing (often requiring three 

to four steps, along with an additional selenization step) has been found to be necessary to 

achieve the desired stoichiometry in this complex quarternary system by the above route [14-16, 

22]. Furthermore, post-treatment of the deposited films using KCN is also practiced to correct for 

the composition of CIGS by eliminating secondary Cu-Se phases [23, 25]. However, use of 

complexing agents can lead to presence of impurities in the film and use of KCN etching is 

found to result in increased surface roughness.  

 

In comparison to DC electrodeposition, pulsed current (PC) electrodeposition is known to offer 

several advantages since it provides additional variables such as duty cycle and amplitude of 

pulsed current/potential. Appropriate regulation of these variables can be used for suitable 



4 

 

manipulation of diffusion layer, grain size and nucleation. This, in turn, results in greater deposit 

homogeneity as well as precise control over stoichiometry and deposition rate. During the 

deposition of thin films of ternary/quaternary systems like CIS/CIGS, such control over the 

composition of individual elements is particularly crucial to obtain single-phase by controlling 

the formation of secondary phases like Cu-Se, In-Se, Ga-Se, etc., thereby making PC 

electrodeposition an attractive technique [26, 27]. Furthermore, by varying the duty cycle, 

reduction in porosity can be achieved by avoiding entrapment of hydrogen during deposition and 

result in a highly dense and compact CIGS films with enhanced photoelectrochemical 

performance [18, 19]. 

 

Despite the above advantages, limited reports are available on the use of pulsed electrodeposition 

for the preparation of CIGS thin-films. Fu et al. have explored different plating techniques 

including DC, pulse and pulse-reverse electrodeposition for the fabrication of CIGS thin films 

and reported elimination of secondary phases such as Cu2-xSe to obtain phase pure chalcopyrite 

CIGS thin-films using pulse-reverse electrodeposition [28]. Liu et al. too have employed PC 

electrodeposition and showed that use of an appropriate duty cycle can eliminate In-Se phase 

formation and help in preparation of single phase CIGS thin films [26]. In general, 

electrodeposition of Ga and In is relatively difficult due to their more negative reduction 

potentials compared to Cu and Se. Additionally, the required amount of In (≈ 18 at.%) for the 

formation of stoichiometric CIGS (theoretically, CuIn0.7Ga0.3Se2) is greater than that of Ga (≈ 7 

at.%). It has also been observed that the In content decreases with increase in pulse off-time 

during the PC electrodeposition of CIS/CIGS thin-films [26, 27]. Due to these reasons, often 

high concentration of In precursor and/or more negative voltage and/or deposition of In-Se on 

CIGS as a subsequent step have been used to adjust the In content in the films, in order to obtain 

stoichiometric CIS/CIGS thin-films [14, 15, 27, 29, 30]. However, In is the least abundant 
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element among Cu, In, Ga and Se and is frequently used for electronic and optoelectronic 

applications in the form of materials such as ITO, InP, InGaAs, CIS, CIGS, etc. making it one of 

most scarce elements in the near future. Hence, it is preferable to use minimal In precursor 

concentration and to explore the possibility to deposit In/In-Se in the second step. In this context, 

it is also relevant to mention that the deposition of In-Se on CIGS in the second stage by 

Bhattacharya et al. not only improved the stoichiometry but also resulted in chalcopyrite CIGS 

films without any surface dispersed Cu-Se phase [14].  

 

In appreciation of the above, the present work proposes the pulse electrodeposition of CIGS in 

two steps, with codeposition of Cu-Ga-Se films in the first step being followed by deposition of 

In in the second step. A two-electrode system, with an additive-free electrolyte, is used and the 

additional step of selenization is avoided. The sequential approach presented herein minimized 

the use of In precursor, which is crucial given the scarcity of In, to achieve the desired 

composition. In addition, optimization of deposition voltage in the first stage resulted in compact 

phase-pure CIGS thin-films with an eight-fold increment in photoresponse over the study 

reported previously by our group [18], as discussed herein. 

 

2.0 Experimental 

Electrodeposition of Cu-Ga-Se in stage I was carried out using a bath containing CuCl2 (3 mM), 

GaCl3 (6 mM), H2SeO3 (8.5 mM) and LiCl (250 mM) dissolved in Hydrion buffer (pH 3) while 

In deposition in stage II used InCl3 (2 mM). The pH of the final solution in stage I was adjusted 

between 2.15 and 2.35 using HCl and no other additives were used. Addition of LiCl as 

supporting electrolyte is not only known to stabilize the electrodeposition bath solution but also 

improve the quality of the deposited layer as previously reported [17]. Pulsed electrodeposition 

of CIGS thin-films was performed by employing a two-electrode system. Conventional 
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electrodeposition often employs a three electrode system wherein the reference electrode has 

been used to maintain the constant potential at cathode. However, the use of reference electrode 

could possibly increase the impurities in the deposited film. For instance, For e.g. Ag+ ions from 

Ag/AgCl electrode have detrimental effects leading to reduced cell efficiencies for 

electrodeposited CdTe based solar cells [31]. In addition, Dharmadasa et al. reported that the 

absence of reference electrode does not change the growth voltage appreciably, indicating not 

much difference in the features (morphology and composition) of the deposit [30]. In addition, 

the two-electrode system is more suitable for the fabrication of large area thin-films that are to be 

used in devices and modules compared to a three-electrode system and is commonly practiced by 

the electroplating industries [27, 30]. Pulsed electrodeposition was performed in a vertical cell 

with high purity graphite plate as an anode and Mo sputtered glass as a cathode using a Pulse 

Power Supply (Dynatronix Model DuPR10-3-6). Mo/glass was ultrasonicated for 10 min each in 

acetone, ethanol and de-ionized water, respectively and was purged with nitrogen gas prior to the 

deposition. Schematic representations of the electrodeposition set-up, pulsed voltage applied and 

the corresponding current density are shown in Fig. S1. Schematic representation of the 

procedure adopted for the deposition of CIGS thin-films is depicted in Fig. S2. The deposition 

voltage was optimized in stage I while keeping a constant duty cycle of 50 % while a voltage of -

1.5 V was used for In deposition. Cu-Ga-Se and In deposition were carried out for 30 min and 10 

min, respectively, while maintaining the bath at room temperature without stirring. The 

electrodeposited films were rinsed thoroughly with DI water and were annealed at 550 °C for 30 

min under Ar atmosphere to form the desired CIGS phase by the intermixing of two layers. 

 

The microstructural and elemental analyses were performed using Scanning electron microscope 

(SEM) (S3400N Hitachi) with an attached EDAX system (Thermo Electron Corporation). The 

roughness of the films was measured using profilometry (Mahr Perthometer) and the 



7 

 

measurements were carried out using a traverse length of 5.60 mm at a minimum of 8 locations 

on the samples. X-ray diffraction (XRD) was employed to examine the phase constitution of the 

annealed CIGS films using X-ray diffractometer (Bruker's D8 advance) with Cu Kα radiation (λ 

= 1.54 Å). The diffraction patterns were collected in the range of 2θ = 20 - 70° with a scan rate 

of 1° per min. Micro-Raman Spectra of CIGS thin-films were recorded using Raman 

spectrometer (Horiba Jobin Yvon-Lab Ram HR-800) with Ar ion laser of 514 nm as the light 

source in the scan range of 100 - 600 cm-1. In the present study microscopic focusing was used to 

detect Cu2-xSe microcrystallites on the surface of CIGS thin-films. In addition, Raman mapping 

was performed over several sections on the surface of the CIGS films. Typically about 30 μm x 

30 μm area was covered in each section with a sesitivity of about 0.9 μm in X and Y directions. 

An X-Ray Fluorescence spectrometer (Fisherscope, XUV TDD) was used to determine the bulk 

composition and thickness of the CIGS films. Transmission Electron Microscope (FEI Tecnai 

G2 200 KV) was used to record the HRTEM images of CIGS thin-films. CIGS thin-films were 

scraped into powder form which was dispersed in ethanol. Ethanol suspension was dropped onto 

Cu grid for TEM analysis. Optical absorption spectra were obtained using ultraviolet/visible/near 

infrared diffuse reflectance spectrometer (VARIAN CARY -5000 UV/VIS/NIR) in the 

wavelength range of 200-2500 nm. 

 

Mott-Schottky plots were recorded in a 0.5M H2SO4 solution using an impedance analyzer 

(Solartron SI 1260) with an electrochemical interface (SI 1287) wherein Pt, Saturated Calomel 

Electrode (SCE) and CIGS/Mo/Glass were used as counter, reference and working electrodes, 

respectively. The photoelectrochemical (PEC) performance of the CIGS thin films was 

investigated using electrochemical analyzer (CH Instruments 660A). The measurements were 

carried out potentiostatically in an electrochemical cell. A classical three-electrode cell with Pt 

foil as the counter electrode, SCE as the reference electrode, and CIGS/Mo/Glass as the working 
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electrode were used in 0.5 M H2SO4 solution. Solar simulator (Newport) with AM 1.5 Global 

(100 mW/cm2) lens was used as the light source for PEC measurements. 

 

3.0 Results and Discussion 

3.1 Optimization of deposition voltage for Cu-Ga-Se films 

The elemental composition of Cu-Ga-Se films prepared at different deposition voltages, as 

determined from energy dispersive X-ray spectroscopy, is shown in Fig. 1. The amount of Ga is 

noted to increase from ≈ 3 to 6.8 at.% with the change in deposition voltage from -1.0 to -1.2 V. 

An increased negative voltage is expected to increase the Ga content since Ga has more negative 

reduction potential, as mentioned earlier. In addition, the use of two-electrode system is known 

to require higher deposition voltages than that required for a three-electrode system [27, 30]. 

Hence, increase in Ga content is attributed to the increased deposition voltage to -1.2 V. Further 

change in deposition voltage to -1.5 V, however, leads to a decrease in the amount of Ga to ≈ 4 

at.%. The pulsed deposition voltage applied for the deposition and the corresponding current 

density during the deposition are shown in Fig S1b and S1c, respectively. It is observed from 

Fig. S1b that there is a positive current density during the pulse off-time even without the 

application of any voltage. Such an unintended positive current density might oxidize the 

elements with least electronegativity from the deposited film leading to the dissolution of 

corresponding element into the electrolyte. In the present case, at the deposition voltage of -1.5 

V, the magnitude of the positive current density during the pulse off-time might be sufficient to 

oxidize Ga, since it has the lowest electronegativity among the three elements. This could 

possibly be the reason for the lower Ga content at -1.5 V. A similar phenomenon has also been 

reported during pulse electrodeposition of CIS and CIGS thin-films [26, 32]. Considering the 

lower Ga content required for obtaining stoichiometric CIGS, it is easier to optimize the Cu-Ga-

Se films at a relatively lower voltage. As can be seen from Fig. 1, a deposition voltage of -1.2 V 
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yields nearly ideal Ga content required ultimately for the formation of stoichiometric CIGS thin-

films. 

 

The surface morphology of Cu-Ga-Se films deposited at different voltages is shown in Fig. 2. 

Although the films deposited at -1.0 V show a uniform morphology, increasing the voltage to -

1.2 V leads to a smoother and denser morphology (Fig. 2b). It is plausible that selective 

dissolution of surface asperities due to relatively higher electrochemical activity leads to the 

smooth and compact morphology in films deposited at -1.2 V, which is desirable for uniform 

deposition of In in the second step. However, the films deposited at a further more negative 

voltage of -1.5 V are rough and porous compared to the other films. This could be attributed to 

the rapid deposition rate at more negative deposition voltage, as well as to the previously 

mentioned dissolution of Ga. Besides the morphological characterization, roughness 

measurements were also carried out using the profilometry. The average surface roughness (Ra) 

values are 60, 20 and 90 nm, for samples deposited at -1, -1.2 and -1.5 V, respectively. These 

values clearly demonstrate the fact that films deposited at -1.2 V (Fig. 2b) are smoothest which 

further corroborates the morphological studies. 

 

Additionally, the CIGS films were characterized using micro-Raman spectra for phase analysis 

before annealing to identify the phases formed during the first deposition step. The specific 

purpose of the high-resolution micro-Raman studies was also to ascertain the vibrational modes 

of individual phases and detect any surface dispersed microcrystallites of Cu2-xSe, as detection of 

phases like CIS, CGS, CIGS, Cu2-xSe is difficult by XRD due to the negligible variation in 2θ 

values for the dominant (112) orientation of each phase. Figure 3a shows the micro-Raman 

spectra of Cu-Ga-Se films deposited at various voltages. Three peaks corresponding to A1 and E1 

modes of CuGaSe2 (CGS) and A1 mode of Cu2-xSe noted at approximately 187, 239 and 260 cm-
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1, respectively, are of interest [33]. In addition, the broader peak observed at 510 cm-1 is 

attributed to the second harmonic of the A1 mode of Cu2-xSe. As can be seen from the figure, the 

peak intensities of the E1 mode of CGS and A1 mode of Cu2-xSe vary with the deposition voltage. 

Cu2-xSe is an undesired secondary phase and, being a degenerate semiconductor, it contributes to 

higher dark current [34]. In addition, Cu2-xSe is a stable phase along with CIGS at the annealing 

temperature (550 °C) which is used to improve the crystallinity of CIGS phase and is expected to 

be present in minimal amounts even after annealing [35-37]. The probability of its presence after 

annealing is higher if the as-deposited films are Cu-rich in composition. Hence, reduction of this 

undesired secondary phase in as-deposited films is essential to improve the quality of CIGS thin-

films which can affect the ultimate device performance. Consequently, presence of higher CGS 

and lower Cu2-xSe is preferable in the as-deposited film. The ratios of E1 mode of CGS and A1 

mode of Cu2-xSe, as obtained from Raman spectra, are shown in Fig. 3b, for Cu-Ga-Se films 

deposited at -1.0, -1.2 and -1.5 V, respectively. As the highest ratio of 0.50 corresponding to the 

maximum amount of CGS phase is obtained at a deposition voltage of -1.2 V, this value was 

deemed optimum for codeposition of Cu-Ga-Se films in the first stage.  

 

3.2 Preparation of CIGS by deposition of In and annealing   

As mentioned earlier, deposition of In was subsequently carried out at -1.5 V for 10 min in stage 

II on Cu-Ga-Se films deposited at different voltages in stage I. A low concentration of In 

precursor was used to achieve the desired amount of In since the deposition was performed in a 

separate step.. The CGS/In films were annealed at 550 °C under Ar atmosphere to form the 

CIGS by intermixing of the two layers. The elemental composition of annealed films, as well as 

the relevant compositional ratios Cu/(In+Ga) and Ga/(In+Ga) in the films are depicted in Fig. 4. 

It was deemed informative to plot the above as a function of the deposition voltage applied 

during stage I because, although In was deposited in a subsequent step, the composition of the 
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Cu-Ga-Se films achieved after stage I plays a key role in determining the eventual stoichiometry 

of the annealed CIGS films. This is primarily because, in the tetragonal chalcopyrite structure of 

CIGS, the Ga and In atoms compete for identical lattice sites [33, 38]. Consequently, the uptake 

of In during stage II is influenced by the Ga content in Cu-Ga-Se films after stage I as clearly 

revealed in Fig. 4. The composition of Cu and Se in the annealed sequentially deposited CIGS 

films does not vary substantially with change in deposition voltage during stage I. The Cu and Se 

contents are also found to be close to the ideal values required for formation of stoichiometric 

CIGS films. In contrast, considerable variation is observed in the Ga and In content in the 

annealed CIGS thin-films depending on the deposition voltage applied during Cu-Ga-Se 

deposition in stage I. When the amount of Ga is relatively lower at stage I deposition voltages of 

-1.0 V and -1.5 V, the In content correspondingly increases. However, at -1.2 V, the Ga and In 

are present in near-ideal quantities to form stoichiometric CIGS. At  the stage I deposition 

voltage of -1.2 V, the Cu/(In+Ga) and Ga/(In+Ga) ratios are observed to be 0.97 and 0.27, 

respectively, for annealed CIGS films, which are close to the desirable values for high efficient 

CIGS thin-films [2, 39, 40]. The stoichiometries of the films, as obtained from EDS, were 

Cu0.97In0.90Ga0.10Se2.03, Cu0.97In0.73Ga0.27Se2.03 and Cu1.02In0.81Ga0.19Se1.98 at -1.0 V, -1.2 V and -

1.5V, respectively, indicating the near-ideal stoichiometry in the films deposited at -1.2 V.  

 

Figure 5 shows the morphology of sequential deposited and annealed CIGS thin-films for 

various deposition voltages employed during stage I. As can be seen, a rough surface 

morphology is observed for films deposited at -1.0 and -1.5 V. The films deposited at -1.2 V 

were noted to have a smooth and compact morphology (Fig. 5b). Such a dense morphology is 

well-suited for application as solar absorber layers, since it facilitates easier diffusion of minority 

charge carriers and reduces recombination, which ultimately yields improved cell performance 

[18, 26]. The roughness measurements by profilometry yielded the Ra values as 90, 30 and 130 
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nm, for the films deposited at -1.0, -1.2 and -1.5 V, respectively, also support the observed SEM 

results.  

 

Figure 6 shows the X-ray diffraction patterns of sequential deposited and annealed CIGS thin-

films at various deposition voltages used in stage I. The XRD patterns in each case are observed 

to have a preferred orientation corresponding to (112) of CIGS, with the presence of other peaks 

corresponding to (220), (312) and (424) (JCPDS: 35-1102) confirming the presence of 

crystalline chalcopyrite CIGS phase [41]. In addition, a peak corresponding to Mo from the 

substrate (JCPDS: 42-1120) is also observed. However, a closer inspection reveals a shift in the 

(112) orientation of CIGS to a lower 2θ value for the CIGS films deposited at -1.0 V (inset of 

Fig. 6). It is well known that with decrease in the amount of Ga the (112) peak shifts to lower 2θ 

values as incorporation of Ga leads to a decrease in lattice parameter [42, 43]. As evident from 

the EDS analysis, the film deposited at -1.0 V has a relatively lower Ga content and is expected 

to have a CIGS phase with larger lattice parameter. Also, the higher In content results in a 

secondary indium selenide (In2Se3) phase in the films deposited at -1.0 V. The XRD patterns of 

films deposited at -1.2 V and -1.5 V are, however, found to have well defined peaks 

corresponding to only ideal stoichiometric chalcopyrite CIGS. No considerable shift was 

observed for (112) orientation in the films deposited at -1.2 V and -1.5 V owing to a very minor 

variation in the Ga content. However, such a negligible difference is clearly observed in Raman 

spectra as discussed later. It can also be seen that the maximum peak height is observed in the 

case of CIGS deposited at -1.2 V in stage I, affirming -1.2 V to be the optimized voltage. It is 

also interesting to note that no peaks corresponding to the undesired Cu-Se and In-Se phases are 

observed for the optimized case.  

 

Figure 7a shows the Raman spectra of the sequential deposited and annealed CIGS films for 
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various deposition voltages employed during stage I. The spectra reveal peaks corresponding to 

A1 and B2/E modes of CIGS at wave numbers of 176, 215 and 232 cm-1, respectively [33]. In 

addition, a small peak observed at the wavenumber of 480 cm-1 can attributed to the presence of 

secondary In2Se3 phase for the films deposited at -1.0 V. Figure 7b shows the shift of A1 mode of 

CIGS with deposition voltage. The A1 mode for CIGS films deposited at -1.0 V in stage I is 

observed at a lower Raman shift of 172 cm-1. This could be attributed to the lower Ga content 

observed in these films at -1.0 V. It is well reported that the A1 mode is observed at lower 

wavenumbers in the range of 171-173 cm-1 for CIGS films with very low Ga content, with the 

peak shifting to higher wavenumbers of 176-178 cm-1 for stoichiometric CIGS thin-films and to 

187 cm-1 for CuGaSe2 [33, 44, 45]. The CIGS films deposited at -1.5 V, are also observed to 

have A1 mode at a lower Raman shift of 173 cm-1. As it is evident from EDS, the Ga content is 

higher compared to films deposited at -1.0 V and lower compared to films deposited at -1.2 V. 

The relatively lower Ga content is accountable for the shift of A1 mode to lower wavenumbers. 

However, the films deposited at -1.2 V exhibit a sharp peak at 176 cm-1 which corresponds to the 

stoichiometric CIGS A1 mode and does not contain any CGS and Cu2-xSe phases which were 

observed prior to the second step of deposition, thereby confirming formation of a phase-pure 

chalcopyrite CIGS thin-film. As previously mentioned, elimination of the undesired Cu2-xSe 

secondary phase in the annealed films is extremely crucial, and  is successfully achieved in the 

present case by the optimization of deposition voltage in the first stage followed by the 

deposition of In in the second stage.  

 

3.3 Characterization of optimized CIGS thin-films 

The optimized stoichiometric annealed CIGS thin-films (CGS deposited at -1.2 V in stage I) 

were further characterized using XRF, HRTEM, FESEM, UV-Vis-NIR diffuse reflectance 

spectroscopy, electrochemical impedance spectroscopy and photoelectrochemical analysis. XRF 
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is used to infer the bulk composition and thickness of the CIGS thin-films, which are presented 

in Table 1. As it can be seen, the optimized CIGS films possess desired composition and exhibit 

the near-ideal stoichiometry as required for ideal CIGS absorber layer. The ratios of Cu/(In+Ga) 

and Ga/(In+Ga) are calculated to be 0.94 and 0.27. The composition of the elements and the 

relevant ratios are not only in the desirable range but also in agreement with the results obtained 

from EDS analysis, confirming the uniform composition of the elements in the bulk of the films. 

The thickness of the CIGS films is determined to be ≈ 1.76 μm, which is desirable for high 

efficient CIGS devices [46]. 

 

In addition to the micro-Raman analysis of CIGS films shown in Fig. 7, Raman mapping of the 

optimized CIGS films is performed to further verify their phase-purity. Figure 8 shows the 

Raman mapping of optimized CIGS films wherein red portion of the mapped image refers to the 

dominant CIGS, green refers to secondary Cu2-xSe and blue refers to the In2Se3 phase. The 

Raman map of the as-deposited single-step electrodeposited CIGS films is shown in Fig. S3 for 

comparison. It can be clearly observed that the as-deposited CIGS films contain the mixture of 

phases such as CIGS and Cu2-xSe. However, the map of optimized sequentially deposited and 

annealed CIGS films contains only CIGS hase, thereby indicating the absence of any possible 

secondary phases. In addition, it also affirms the fact that the elements undergo interdiffusion 

during the annealing and form the desired chalcopyrite CIGS phase. Furthermore, 

glass/Mo/interface has been characterized using Raman spectroscopy to analyze the presence of 

different phases over the film’s cross-section. The image recorded while analyzing the films with 

Raman and the corresponding the Raman spectra are shown in Fig. S4. Except for CIGS, no 

secondary phases are observed across the cross-section affirming the formation of phase-pure 

chalcopyrite CIGS in the bulk of the films. 
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 TEM analysis has been carried out to further confirm the inter-diffusion of In and to infer the 

CIGS phase formation. The transmission electron micrograph, the high resolution TEM image 

and TEM-EDS spectrum of CIGS particles are shown in Figure 9. The selected area diffraction 

(SAD) pattern is included as an inset in Fig. 9a. The SAD pattern shows the orientations 

corresponding to (112), (220), (312) and (400) of CIGS, which are in agreement with the 

previously discussed observation from XRD. Figure 9b shows the high resolution TEM image of 

CIGS thin-films, which reveals planes with an interplanar spacing of approximately 3.32 Å and 

2.03 Å. These values are in good agreement with the theoretical values for the (112) and (220) 

orientations of CIGS [41], which corroborates the presence of polycrystalline chalcopyrite CIGS 

observed from XRD analysis. TEM-EDS analysis was also performed as indicated in Fig. 9a and 

is shown in Fig. 9c. The presence of Cu, In Ga and Se affirms the interdiffusion of In (deposited 

in stage II) during annealing leading to the formation of CIGS films.  

 

The bandgap of optimized CIGS films is determined to be 1.27 eV, by using (αhν)2 vs. hν as 

shown in Fig. S6, is close to the value for stoichiometric CIGS thin-films [35]. Mott-Schottky 

(MS) analysis was used to ascertain the flat-band potential, VFB, of the CIGS thin-films using the 

following relation:  

1

𝐶2
=  

2

𝑞𝜀𝜀0𝑁𝑎
 (𝑉 − 𝑉𝐹𝐵 −  

𝑘𝐵𝑇

𝑞
) 

where C is the capacitance, Na is the acceptor concentration, ε is the dielectric constant, ε0 is the 

permitivity of free space, q is the electronic charge, kB is the Boltzmann’s constant, T is the 

temperature, V is the applied potential and VFB is the flat-band potential.  

Figure 10 shows the Mott-Schottky (1/C2 vs. V) plot of CIGS thin-films in 0.5M H2SO4 at a 

frequency of 10 kHz in the dark. The slope of the MS plots is negative, thereby confirming that 

the CIGS film is p-type. The flat band potential was found to be -0.15 V (vs SCE) by 

extrapolating the linear section to x-axis. In addition, Na ≈ 2.6 × 1016 cm-3, calculated using the 
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slope of the curve. The flat-band potential and acceptor density determined herein are close to 

the desirable values for stoichiometric CIGS films that have been reported previously [47]. 

 

Figure 11a shows dark and illuminated current density – voltage characteristics of the annealed 

CIGS thin-films deposited by sequential PC electrodeposition, measured using a 

photoelectrochemical analyzer in 0.5 M H2SO4 with a sweep rate of 10 mV/s. The nature of the 

J-V curve confirms the photo-activity of CIGS thin-films. In addition, it shows the increase in 

cathodic photocurrent with increased cathode potential, which is a characteristic of a 

semiconductor with p-type conductivity. A photocurrent density of ≈ 800 μA/cm2 at a potential 

of -0.4 V vs. SCE is observed. This represents a considerable improvement in photocurrent 

density compared to the previously reported value of ≈ 100 μA/cm2 for single-step 

electrodeposited CIGS films by our group [19]. The crack-free dense morphology observed in 

the present optimized CIGS thin-films supports the easier diffusion of minority carriers and is 

responsible for the improved photoelectrochemical performance. It is also to be noted that the 

photocurrent increases gradually without attaining a saturated value. This behavior can be 

attributed to incomplete photonic conversion, which causes a recombination of charge carriers at 

the grain boundaries of the semiconductor [26]. Figure 11b shows the amperometric current-time 

(I-t) curve of annealed sequential PC electrodeposited CIGS films obtained at -0.4 V by chopped 

light. It clearly demonstrates the nature of photoactivity of CIGS films with a photocurrent 

density of ≈ 0.8 mA/cm2. The improved photoresponse of sequentially deposited and annealed 

CIGS films indicate their potential for application in thin-film solar cells. In addition, the 

photoelectrochemical performance of these films demonstrates their potential application for 

photoelectrochemical hydrogen generation.           

 

Conclusions 
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A novel sequential pulsed current approach has been employed for the fabrication of CIGS thin-

films. Deposition voltage has been optimized for the co-deposition of Cu-Ga-Se films in stage I 

followed by deposition of In in the second stage. A convenient control over the composition of 

individual elements has been achieved by the suitable manipulation of process parameters. 

Characterization of annealed films using XRD and Raman analyses has confirmed the formation 

of phase-pure stoichiometric chalcopyrite CIGS phase. Raman mapping indicated the phase-pure 

CIGS phase formation over the entire surface. CIGS films exhibited p-type conductivity as 

demonstrated from Mott-Schottky as well as PEC studies. Furthermore, a significantly improved 

photoelectrochemical performance has been observed. This technique presents a simplified, 

economic and scalable method for fabrication of CIGS thin-films for solar cell applications.  
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Figure Captions 

 

Figure 1: Variation in composition of individual elements obtained from EDS analysis for as-

deposited Cu-Ga-Se films with varied deposition voltage. 

Figure 2: SEM images of as deposited Cu-Ga-Se films at a voltage of a) -1.0, b) -1.2, and c) -1.5 

V. 

Figure 3: a) Raman spectra of as deposited Cu-Ga-Se films at various voltages and b) ratio of 

CGS to Cu2-xSe intensities from Raman spectra. 

Figure 4: a) Elemental composition and b) Cu/(In+Ga) and Ga/(In+Ga) ratios in sequentially 

deposited and annealed CIGS thin-films with variation in deposition voltage applied during stage 

I. In was deposited at -1.5 V in stage II. 

Figure 5: Morphology of annealed CIGS thin-films deposited at a voltage of a) -1.0 V, b) -1.2 V 

and c) -1.5 V in stage I. 

Figure 6: XRD pattern of annealed sequentially deposited CIGS thin-films at various voltages in 

stage I. Inset: Closer inspection of (112) orientation of CIGS thin-films. 

Figure 7: a) Raman spectra of annealed sequentially deposited CIGS thin-films at various 

voltages in stage I and b) a closer inspection of A1 mode. 

Figure 8: Raman mapping of optimized sequentially deposited and annealed CIGS thin-films 

Figure 9: a) TEM image (Inset: SAED), b) HRTEM image and c) TEM-EDS of optimized 

sequentially deposited CIGS. Red circle in image (a) indicates the position where EDS, SAED 

and HRTEM are performed. 

Figure 10: Mott-Schottky (1/C2 vs. V) plot (recorded at 10 kHz in the dark) for the optimized 

sequentially deposited and annealed CIGS thin-films. 

Figure 11: a) Photoelectrochemical I-V characteristics (under AM1.5G solar simulated light) and 

b) Amperometric I-t curve at -0.4 V of optimized sequentially deposited and annealed CIGS 

thin-films. 
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Table Captions 

 

Table 1: Bulk composition and thickness of optimized sequentially deposited annealed CIGS 

films obtained from X-Ray Fluorescence spectroscopy  
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Table 1 

 

Composition (at. %) 

Stoichiometry Cu/(In+Ga) Ga/(In+Ga) 

Thickness 

(μm) Cu In Ga Se 

24.01 18.52 6.96 50.51 Cu0.96In0.74Ga0.28Se2.02 0.94 0.27 1.7 

 


