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Abstract 

Single phase polycrystalline copper indium gallium diselenide (CIGS) thin-films for solar photovoltaic 

applications were fabricated by an economical two-stage method of Pulsed Current (PC) electrodeposition. 

Cu, Ga and Se were first co-deposited onto a Mo foil followed by deposition of In.  The as-deposited films 

were annealed in Argon atmosphere at 550 °C for 30 min and were further characterized to study their 

morphology, phase constitution, and optical absorption. The results revealed that the films have a compact 

morphology and are comprised of a crystalline chalcopyrite single phase CIGS. The bandgap of the CIGS 

films was found to be 1.27 eV from absorption studies. The photoelectrochemical studies revealed the p-type 

nature of CIGS films with improved photocurrent over that obtained for one-stage PC electrodeposited CIGS 

thin-films. 
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1.  Introduction  

Cu(In, Ga)Se2 (CIGS) is one of the most promising semiconductor absorber layer materials among thin-film 

based solar cells, due to its suitable bandgap, large optical absorption coefficient and high stability  [1]. CIGS 

alloys have been extensively prepared using several techniques [2, 3]. However, an economical and simple 

method like electrodeposition is preferred for scaling up to industrial level. In this context, the advantages of 

pulsed current (PC) electrodeposition have been detailed in our previously reported work [4].  

 

Electrodeposition of Cu-In-Ga-Se has been previously reported for fabrication of chalcopyrite CIGS thin-

films. However, the film composition has been found to deviate from the ideal stoichiometry, resulting in 

formation of undesired phases [5]. Easier control over the composition of individual elements has been 

reported by several researchers using multi-stage DC electrodeposition of CIGS thin-films resulting in higher 

efficiencies [6-8], but relies on use of additives and an additional selenization step to improve the morphology 

and stoichiometry of the films.  

  

In the present work, PC electrodeposition with a two-stage approach consisting of a two electrode system is 

employed for the first time to fabricate stoichiometric chalcopyrite CIGS (CGS/In) thin-films on a Mo foil. 

This technique is novel in that it overcomes the stoichiometry related problems associated with the single-step 

method and also obviates the use of complexing agents or an additional selenization step as employed in other 

previously reported multi-stage methods. The resulting films are found to exhibit a compact morphology 

devoid of undesirable phases, resulting in superior photoelectrochemical performance compared to the single-

stage electrodeposited CIGS films reported previously [9]. 

 

2. Materials and Methods 

Electrodeposition of Cu-Ga-Se was carried out using a bath containing CuCl2 (3 mM), GaCl3 (8.5 mM), 

H2SeO3 (8.5 mM) and LiCl (250 mM) dissolved in Hydrion buffer (pH 3), followed by In deposition in the 

second stage using InCl3 (3.2 mM) in Hydrion buffer. Pulse electrodeposition (Dynatronix Pulse Power 

Supply) was performed in a vertical cell with high purity graphite plate as an anode and Mo foil (25 μm thick) 

as a cathode. An elaborate procedure was adopted for cleaning the Mo foil prior to deposition [4]. Such a two 

electrode system is more suitable for larger area thin-films and is commonly practiced by the electroplating 

industries.  A pulse period of 20 ms, duty cycle of 50% and deposition potential of -1.5 V were used in both 
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stages. The depositions of Cu-Ga-Se and In were carried out for 15 min and 8 min respectively, while 

maintaining the bath at room temperature without stirring, in the first and second stages for achieving 

stoichiometric CIGS. In comparison to a classical three electrode system, no significant difference in the 

features of the electrodeposit was observed with the use of a two electrode system [4, 9-10]. The 

electrodeposited films were annealed at 550 °C for 30 min under Ar atmosphere. Annealing at a temperature 

higher than 500 °C is not only expected to improve crystallinity of the CIGS phase but also aids in formation 

of the crcucial MoSe2 phase at the interface of Mo/CIGS to improve the ohmic contact and adhesion between 

Mo and CIGS. The annealed CIGS films were characterized using Scanning electron microscopy (SEM), X-

ray diffraction, Raman spectroscopy, UV-diffuse reflectance spectroscopy and Photoelectrochemical (PEC) 

analysis. PEC studies were made in 0.5 M Na2SO4 solution with Pt and SCE as counter and reference 

electrodes, using a solar simulator with AM 1.5G lens as the light source. 

 

3. Results and Discussions 

Figure 1a shows the dense and compact morphology of annealed CIGS thin-films. Pulsed current (PC) 

electrodeposition produces a relatively more homogeneous surface as the rate-determining step is controlled 

by mass-transfer process [5]. Pulse off-time during deposition allows the diffusion of ad-atoms and facilitates 

the formation of new nucleation sites, thereby yielding a homogeneous and compact structure [5, 9]. Such a 

morphology is desirable for the photovoltaic absorber layer since it leads to lower resistance and faster 

minority carrier diffusion, which ultimately serves to improve cell performance. The elemental composition 

of individual elements of as-deposited and annealed CIGS thin-films, as obtained from energy dispersive 

spectrocopy (EDS), are shown in Fig. 1b. The stoichiometry of the annealed CIGS films is determined to be 

Cu0.96In0.73Ga0.27Se2.04. It may be noted that the stoichiometry is close to the preferred near-ideal stoichiometry 

(CuIn0.7Ga0.3Se2). While development of a single-stage electrodeposition process to fabricate CIGS thin-films 

with near-ideal stoichiometry can be interesting, prior efforts have led to formation of undesired Cu-Se phases 

on the surface, which are detrimental to the performance of the device [5]. Use of complexing agents in the 

electrolyte during deposition and/or etching of the CIGS film using KCN is commonly practiced in order to 

remove excess Cu and, hence, the secondary Cu-Se phases. However these can lead to presence of impurities 

in the films and increased film roughness, which adversely influence the performance. Therefore, it is 

preferable to deposit an In-layer at the surface followed by annealing [7]. In addition, co-deposition of Cu-In-

Ga-Se with required stoichiometry is difficult due to the large variation in their deposition potentials, whereas 
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two-stage deposition makes it relatively easier to achieve the required composition of elements. In a similar 

attempt, Bhattacharya et al. have reported three-stage (CIGS/Cu/In) direct-current (DC) electrodeposition of 

crack-free dense CIGS thin-films with lower Ga content, attributable to subsequent deposition of Cu and In 

layers and loss of material during annealing [7]. In the present work, suitable optimization of pulse parameters 

in the first stage followed by deposition of In in the second stage, aided the formation of stoichiometric CIGS 

films. 

 

Figure 1 

 

Figure 2a shows the typical XRD pattern of annealed CIGS thin-films prepared by two-stage PC 

electrodeposition revealing a preferred orientation corresponding to (112) of CIGS, other peaks corresponding 

to (220), (312) and (424) (JCPDS: 35-1102), confirming the presence of crystalline chalcopyrite CIGS phase 

[5]. In addition, peaks representing MoSe2 (JCPDS: 29-0914) and Mo substrate (JCPDS: 42-1120) are also 

observed. Wada et al. have reported that formation of a thin layer of MoSe2 at temperatures higher than 500 

°C enhances adhesion and improves the ohmic contact between Mo and CIGS [11]. It is also interesting to 

note that no peaks corresponding to the undesired Cu-Se phases are observed. 

 

Figure 2b shows the Raman spectra of the as-deposited and annealed CIGS films. The spectrum of as-

deposited CIGS films reveals peaks corresponding to CIGS and undesired Cu2-xSe situated in the range of 160 

– 180 cm-1 and 260 cm-1, respectively, with the former peak being broader due to incomplete CIGS phase 

formation before annealing. In contrast, annealed CIGS thin films have well-defined peaks of CIGS A1 mode 

and B2/E mode at wave numbers of 176 and 215 cm-1. The undesired Cu2-xSe phase is also absent in the 

annealed samples confirming the formation of single phase chalcopyrite CIGS thin-films, which also 

corroborates the XRD results. In addition, a mode corresponding to MoSe2 is also observed at 241 cm-1 in the 
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annealed CIGS thin-films. Appropriate optimization of pulse parameters during deposition of Cu-Ga-Se in the 

first stage and In in the second stage, combined with the annealing conditions chosen, plausibly facilitated 

control over the overall composition and resulted in stoichiometric CIGS thin-films.  

 

Figure 2 

 

Figure 3a shows the (αhν)2 vs. hν plot of annealed CIGS thin-films. Extrapolation of the linear section of the 

plot yields a bandgap of 1.27 eV, which compares well with the desired value. The photoelectrochemical 

performance of CIGS thin-films was investigated in 0.5 M Na2SO4. Current vs. potential curves were obtained 

in the potential range of 0 to -0.7 V vs. SCE at a sweep rate of 10 mV/s. Figure 3b shows the I-V curves in 

dark and under AM 1.5G solar simulated light for the CIGS films. I-V curve of one-stage PC electrodeposited 

CIGS films are also shown in Fig. 3b for comparison. An increase in cathodic photocurrent, characteristic of a 

p-type semiconductor, is observed with increase in cathodic potential. This behavior can be attributed to 

incomplete photonic conversion, which causes a recombination of charge carriers at the grain boundary of the 

semiconductor [12]. A photocurrent density of ≈ 0.2 mA/cm2 at a potential of -0.6 V vs. SCE is observed. It is 

pertinent to note that significant reduction in the dark current and a considerable improvement in the 

photocurrent are observed compared to single-stage electrodeposited CIGS films previously reported, which 

yielded a photocurrent of ≈ 0.089 mA/cm2 at a potential of -0.6 V vs. SCE [9]. The near-ideal stoichiometry 

and dense morphology achieved by the two-stage electrodeposition process, combined with complete 

elimination of the undesirable Cu-Se phase, could have resulted in the reduction of dark current and improved 

photocurrent. It is important to note that Cu-Se is present in the CIGS films deposited by DC deposition [5] 

and, being a degenerate semiconductor, is highly conductive. Consequently, its ability to sit at grain 

boundaries and/or at the surface of the film facilitates electron flow without any resistance even in the absence 

of light thereby contributing to high dark currents [13].  
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Figure 3 

4. Conclusions 

Near-ideal stoichiometric single phase chalcopyrite CIGS (Cu0.96In0.73Ga0.27Se2.04) thin-films have been 

deposited using two-stage (Cu-Ga-Se/In) PC electrodeposition. Second stage incorporation of In was found to 

successfully avoid formation of undesirable phases like Cu-Se. Deposition of phase pure CIGS films with 

dense morphology by this scalable process resulted in improved photoelectrochemical performance.  
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Figure Captions 

Figure 1: a) SEM image of an annealed two-stage PC electrodeposited CIGS thin-film and b) Elemental 

composition of CIGS thin-film before and after annealing 

Figure 2: a) XRD pattern of annealed and b) Raman spectrum of as-deposited and annealed two-stage PC 

electrodeposited CIGS thin-films 
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Figure 3: a) (αhν)2 vs. hν plot of two-stage PC electrodeposited CIGS thin-films and b) Photoelectrochemical 

response of annealed one-stage and two-stage PC electrodeposited CIGS thin-films 


