147 research outputs found
Methane and Nitrogen Abundances On Pluto and Eris
We present spectra of Eris from the MMT 6.5 meter telescope and Red Channel
Spectrograph (5700-9800 angstroms; 5 angstroms per pix) on Mt. Hopkins, AZ, and
of Pluto from the Steward Observatory 2.3 meter telescope and Boller and
Chivens spectrograph (7100-9400 angstroms; 2 angstroms per pix) on Kitt Peak,
AZ. In addition, we present laboratory transmission spectra of methane-nitrogen
and methane-argon ice mixtures. By anchoring our analysis in methane and
nitrogen solubilities in one another as expressed in the phase diagram of
Prokhvatilov and Yantsevich (1983), and comparing methane bands in our Eris and
Pluto spectra and methane bands in our laboratory spectra of methane and
nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are
about 10% and about 90%, and Pluto's bulk methane and nitrogen abundances are
about 3% and about 97%. Such abundances for Pluto are consistent with values
reported in the literature. It appears that the bulk volatile composition of
Eris is similar to the bulk volatile composition of Pluto. Both objects appear
to be dominated by nitrogen ice. Our analysis also suggests, unlike previous
work reported in the literature, that the methane and nitrogen stoichiometry is
constant with depth into the surface of Eris. Finally, we point out that our
Eris spectrum is also consistent with a laboratory ice mixture consisting of
40% methane and 60% argon. Although we cannot rule out an argon rich surface,
it seems more likely that nitrogen is the dominant species on Eris because the
nitrogen ice 2.15 micron band is seen in spectra of Pluto and Triton.Comment: The manuscript has 44 pages, 15 figures, and four tables. It will
appear in the Astrophysical Journa
NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results
The NEOWISE dataset offers the opportunity to study the variations in albedo
for asteroid classification schemes based on visible and near-infrared
observations for a large sample of minor planets. We have determined the
albedos for nearly 1900 asteroids classified by the Tholen, Bus and Bus-DeMeo
taxonomic classification schemes. We find that the S-complex spans a broad
range of bright albedos, partially overlapping the low albedo C-complex at
small sizes. As expected, the X-complex covers a wide range of albedos. The
multi-wavelength infrared coverage provided by NEOWISE allows determination of
the reflectivity at 3.4 and 4.6 m relative to the visible albedo. The
direct computation of the reflectivity at 3.4 and 4.6 m enables a new
means of comparing the various taxonomic classes. Although C, B, D and T
asteroids all have similarly low visible albedos, the D and T types can be
distinguished from the C and B types by examining their relative reflectance at
3.4 and 4.6 m. All of the albedo distributions are strongly affected by
selection biases against small, low albedo objects, as all objects selected for
taxonomic classification were chosen according to their visible light
brightness. Due to these strong selection biases, we are unable to determine
whether or not there are correlations between size, albedo and space
weathering. We argue that the current set of classified asteroids makes any
such correlations difficult to verify. A sample of taxonomically classified
asteroids drawn without significant albedo bias is needed in order to perform
such an analysis.Comment: Accepted to Ap
The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations
During its approach to asteroid (101955) Bennu, NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft surveyed Bennu's immediate environment, photometric properties, and rotation state. Discovery of a dusty environment, a natural satellite, or unexpected asteroid characteristics would have had consequences for the mission's safety and observation strategy. Here we show that spacecraft observations during this period were highly sensitive to satellites (sub-meter scale) but reveal none, although later navigational images indicate that further investigation is needed. We constrain average dust production in September 2018 from Bennu's surface to an upper limit of 150 g s(-1) averaged over 34 min. Bennu's disk-integrated photometric phase function validates measurements from the pre-encounter astronomical campaign. We demonstrate that Bennu's rotation rate is accelerating continuously at 3.63 +/- 0.52 x 10(-6) degrees day(-2), likely due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, with evolutionary implications.This material is based upon work supported by NASA under Contract NNM10AA11C
issued through the New Frontiers Program. This work made use of sbpy (http://sbpy.
org), a community-driven Python package for small-body planetary astronomy supported by NASA PDART Grant No. 80NSSC18K0987. A portion of this research was
carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration. M.A.B. and S.F.
acknowledge financial support from CNES
NEOWISE Observations of Near-Earth Objects: Preliminary Results
With the NEOWISE portion of the \emph{Wide-field Infrared Survey Explorer}
(WISE) project, we have carried out a highly uniform survey of the near-Earth
object (NEO) population at thermal infrared wavelengths ranging from 3 to 22
m, allowing us to refine estimates of their numbers, sizes, and albedos.
The NEOWISE survey detected NEOs the same way whether they were previously
known or not, subject to the availability of ground-based follow-up
observations, resulting in the discovery of more than 130 new NEOs. The
survey's uniformity in sensitivity, observing cadence, and image quality have
permitted extrapolation of the 428 near-Earth asteroids (NEAs) detected by
NEOWISE during the fully cryogenic portion of the WISE mission to the larger
population. We find that there are 98119 NEAs larger than 1 km and
20,5003000 NEAs larger than 100 m. We show that the Spaceguard goal of
detecting 90% of all 1 km NEAs has been met, and that the cumulative size
distribution is best represented by a broken power law with a slope of
1.320.14 below 1.5 km. This power law slope produces 1,900
NEAs with 140 m. Although previous studies predict another break in the
cumulative size distribution below 50-100 m, resulting in an increase in
the number of NEOs in this size range and smaller, we did not detect enough
objects to comment on this increase. The overall number for the NEA population
between 100-1000 m are lower than previous estimates. The numbers of near-Earth
comets will be the subject of future work.Comment: Accepted to Ap
Photometry of Particles Ejected From Active Asteroid (101955) Bennu
AbstractNear‐Earth asteroid (101955) Bennu is an active asteroid experiencing mass loss in the form of ejection events emitting up to hundreds of millimeter‐ to centimeter‐scale particles. The close proximity of the Origins, Spectral Interpretations, Resource Identification, and Security–Regolith Explorer spacecraft enabled monitoring of particles for a 10‐month period encompassing Bennu's perihelion and aphelion. We found 18 multiparticle ejection events, with masses ranging from near zero to hundreds of grams (or thousands with uncertainties) and translational kinetic energies ranging from near zero to tens of millijoules (or hundreds with uncertainties). We estimate that Bennu ejects ~104 g per orbit. The largest event took place on 6 January 2019 and consisted of ~200 particles. The observed mass and translational kinetic energy of the event were between 459 and 528 g and 62 and 77 mJ, respectively. Hundreds of particles not associated with the multiparticle ejections were also observed. Photometry of the best‐observed particles, measured at phase angles between ~70° and 120°, was used to derive a linear phase coefficient of 0.013 ± 0.005 magnitudes per degree of phase angle. Ground‐based data back to 1999 show no evidence of past activity for Bennu; however, the currently observed activity is orders of magnitude lower than observed at other active asteroids and too low be observed remotely. There appears to be a gentle decrease in activity with distance from the Sun, suggestive of ejection processes such as meteoroid impacts and thermal fracturing, although observational bias may be a factor
NEOWISE Studies of Asteroids with Sloan Photometry: Preliminary Results
We have combined the NEOWISE and Sloan Digital Sky Survey data to study the
albedos of 24,353 asteroids with candidate taxonomic classifications derived
using Sloan photometry. We find a wide range of moderate to high albedos for
candidate S-type asteroids that are analogous to the S-complex defined by
previous spectrophotometrically-based taxonomic systems. The candidate C-type
asteroids, while generally very dark, have a tail of higher albedos that
overlaps the S types. The albedo distribution for asteroids with a
photometrically derived Q classification is extremely similar to those of the S
types. Asteroids with similar colors to (4) Vesta have higher albedos than the
S types, and most have orbital elements similar to known Vesta family members.
Finally, we show that the relative reflectance at 3.4 and 4.6 m is higher
for D-type asteroids and suggest that their red visible and near-infrared
spectral slope extends out to these wavelengths. Understanding the relationship
between size, albedo, and taxonomic classification is complicated by the fact
that the objects with classifications were selected from the
visible/near-infrared Sloan Moving Object Catalog, which is biased against
fainter asteroids, including those with lower albedos.Comment: ApJ accepte
Preliminary Results from NEOWISE: An Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science
The \emph{Wide-field Infrared Survey Explorer} has surveyed the entire sky at
four infrared wavelengths with greatly improved sensitivity and spatial
resolution compared to its predecessors, the \emph{Infrared Astronomical
Satellite} and the \emph{Cosmic Background Explorer}. NASA's Planetary Science
Division has funded an enhancement to the \WISE\ data processing system called
"NEOWISE" that allows detection and archiving of moving objects found in the
\WISE\ data. NEOWISE has mined the \WISE\ images for a wide array of small
bodies in our Solar System, including Near-Earth Objects (NEOs), Main Belt
asteroids, comets, Trojans, and Centaurs. By the end of survey operations in
February 2011, NEOWISE identified over 157,000 asteroids, including more than
500 NEOs and 120 comets. The NEOWISE dataset will enable a panoply of new
scientific investigations.Comment: ApJ accepte
Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: I. Inflammatory diseases
Abstract Inflammatory diseases of the aorta include routine atherosclerosis, aortitis, periaortitis, and atherosclerosis with excessive inflammatory responses, such as inflammatory atherosclerotic aneurysms. The nomenclature and histologic features of these disorders are reviewed and discussed. In addition, diagnostic criteria are provided to distinguish between these disorders in surgical pathology specimens. An initial classification scheme is provided for aortitis and periaortitis based on the pattern of the inflammatory infiltrate: granulomatous/giant cell pattern, lymphoplasmacytic pattern, mixed inflammatory pattern, and the suppurative pattern. These inflammatory patterns are discussed in relation to specific systemic diseases including giant cell arteritis, Takayasu arteritis, granulomatosis with polyangiitis (Wegener's), rheumatoid arthritis, sarcoidosis, ankylosing spondylitis, Cogan syndrome, Behcet's disease, relapsing polychondritis, syphilitic aortitis, and bacterial and fungal infections
Episodes of particle ejection from the surface of the active asteroid (101955) Bennu
Active asteroids are those that show evidence of ongoing mass loss. We report repeated instances of particle ejection from the surface of (101955) Bennu, demonstrating that it is an active asteroid. The ejection events were imaged by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) spacecraft. For the three largest events, we estimated the ejected particle velocities and sizes, event times, source regions, and energies. We also determined the trajectories and photometric properties of several gravitationally bound particles that orbited temporarily in the Bennu environment. We consider multiple hypotheses for the mechanisms that lead to particle ejection for the largest events, including rotational disruption, electrostatic lofting, ice sublimation, phyllosilicate dehydration, meteroid impacts, thermal stress fracturing, and secondary impacts
The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements
The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids
- …