The NEOWISE dataset offers the opportunity to study the variations in albedo
for asteroid classification schemes based on visible and near-infrared
observations for a large sample of minor planets. We have determined the
albedos for nearly 1900 asteroids classified by the Tholen, Bus and Bus-DeMeo
taxonomic classification schemes. We find that the S-complex spans a broad
range of bright albedos, partially overlapping the low albedo C-complex at
small sizes. As expected, the X-complex covers a wide range of albedos. The
multi-wavelength infrared coverage provided by NEOWISE allows determination of
the reflectivity at 3.4 and 4.6 μm relative to the visible albedo. The
direct computation of the reflectivity at 3.4 and 4.6 μm enables a new
means of comparing the various taxonomic classes. Although C, B, D and T
asteroids all have similarly low visible albedos, the D and T types can be
distinguished from the C and B types by examining their relative reflectance at
3.4 and 4.6 μm. All of the albedo distributions are strongly affected by
selection biases against small, low albedo objects, as all objects selected for
taxonomic classification were chosen according to their visible light
brightness. Due to these strong selection biases, we are unable to determine
whether or not there are correlations between size, albedo and space
weathering. We argue that the current set of classified asteroids makes any
such correlations difficult to verify. A sample of taxonomically classified
asteroids drawn without significant albedo bias is needed in order to perform
such an analysis.Comment: Accepted to Ap