109 research outputs found

    An Optical and X-ray Examination of Two Radio Supernova Remnant Candidates in 30 Doradus

    Full text link
    The giant HII region 30 Doradus is known for its violent internal motions and bright diffuse X-ray emission, suggesting the existence of supernova remnants (SNRs), but no nonthermal radio emission has been detected. Recently, Lazendic et al. compared the H-alpha/H-beta and radio/H-alpha ratios and suggested two small radio sources to be nonthermal and thus SNR candidates; however, no optical or X-ray counterparts were detected. We have used high-resolution optical images and high-dispersion spectra to examine the morphological, spectral, and kinematic properties of these two SNR candidates, and still find no optical evidence supporting their identification as SNRs. We have also determined the X-ray luminosities of these SNR candidates, and find them 1-3 orders of magnitude lower than those commonly seen in young SNRs. High extinction can obscure optical and X-ray signatures of an SNR, but would prohibit the use of a high radio/H-alpha ratio to identify nonthermal radio emission. We suggest that the SNR candidate MCRX J053831.8-690620 is associated with a young star forming region; while the radio emission originates from the obscured star forming region, the observed optical emission is dominated by the foreground. We suggest that the SNR candidate MCRX J053838.8-690730 is associated with a dust/molecular cloud, which obscures some optical emission but not the radio emission.Comment: 13 pages, 2 figures, accepted for publication in the ApJ, Nov 10, 200

    L'acacia au Sénégal

    Get PDF
    L'intĂ©rĂȘt agronomique et Ă©cologique des rhizobiums repose essentiellement sur leurs propriĂ©tĂ©s symbiotiques. Il est donc capital de pouvoir apprĂ©cier la diversitĂ© des souches sur la base de leur pouvoir de nodulation. L'objectif de ce travail est de proposer une nouvelle approche, alternative aux tests de nodulation, permettant de classer les souches en fonction de leur spĂ©cificitĂ© symbiotique. Au cours des premiĂšres Ă©tapes de l'interaction rhizobium-lĂ©gumineuses, les rhizobiums excrĂštent des molĂ©cules signal, appelĂ©es facteurs Nod, qui jouent un rĂŽle dĂ©terminant dans l'infection et la nodulation des plantes-hĂŽtes. Leur utilisation potentielle comme marqueur de la spĂ©cificitĂ© de nodulation a Ă©tĂ© Ă©valuĂ©e Ă  partir de l'Ă©tude d'une collection de souches isolĂ©es d'#Acacia et de #Sesbania au SĂ©nĂ©gal. L'analyse chromatographique des facteurs Nod de ces souches a montrĂ© que les profils chromatographiques sont parfaitement corrĂ©lĂ©s Ă  la fois Ă  la structure chimique des facteurs Nod et Ă  la spĂ©cificitĂ© d'hĂŽte des souches, et plus particuliĂšrement Ă  la plante d'isolement. Une telle mĂ©thode de caractĂ©risation globale des facteurs Nod pourrait donc ĂȘtre utilisĂ©e pour la caractĂ©risation symbiotique des rhizobiums, en particulier pour l'Ă©tude taxonomique, l'Ă©tude de la biodiversitĂ© des souches ou pour le contrĂŽle des inoculums. (RĂ©sumĂ© d'auteur

    Confronting the Superbubble Model with X-ray Observations of 30 Dor C

    Get PDF
    We present an analysis of XMM-Newton observations of the superbubble 30 Dor C and compare the results with the predictions from the standard wind-blown bubble model. We find that the observed X-ray spectra cannot be fitted satisfactorily with the model alone and that there is evidence for nonthermal X-ray emission, which is particularly important at > 4 keV. The total unabsorbed 0.1-10 keV luminosities of the eastern and western parts of the bubble are ~3 10^36 erg/s and ~5 10^36 erg/s, respectively. The unabsorbed 0.1-10 keV luminosity of the bubble model is 4 10^36 erg/s and so the power-law component contributes between 1/3 and 1/2 to the total unabsorbed luminosity in this energy band. The nature of the hard nonthermal emission is not clear, although recent supernovae in the bubble may be responsible. We expect that about one or two core-collapse supernovae could have occured and are required to explain the enrichment of the hot gas, as evidenced by the overabundance of alpha-elements by a factor of 3, compared to the mean value of 0.5 solar for the interstellar medium in the Large Magellanic Cloud. As in previous studies of various superbubbles, the amount of energy currently present in 30 Dor C is significantly less than the expected energy input from the enclosed massive stars over their lifetime. We speculate that a substantial fraction of the input energy may be radiated in far-infrared by dust grains, which are mixed with the hot gas because of the thermal conduction and/or dynamic mixing.Comment: 25 pages, 4 figures. To appear in The Astrophysical Journal, August 20, 2004 issu

    Thermal and Non-thermal X-Rays from the LMC Super Bubble 30 Dor C

    Full text link
    We report on the discovery of thermal and non-thermal X-rays from the shells of the super bubble (SB) 30 Dor C in the Large Magellanic Cloud (LMC). The X-ray morphology is a nearly circular shell with a radius of about 40 pc, which is bright on the northern and western sides. The spectra of the shells are different from region to region. The southern shell shows clear emission lines, and is well fitted with a model of a thin-thermal plasma (kT = 0.21keV) in non-equilibrium ionization (NEI) plus a power-law component. This thermal plasma is located inside of the H alpha emission, which is the outer edge of the shell of the SB. The northern and western sides of the SB are dim in H alpha emission, but are bright in non-thermal (power-law) X-rays with a photon index of 2.1-2.9. The non-thermal X-ray shell traces the outer boundary of the radio shell. These features of thin-thermal and non-thermal X-rays are similar to those of SN 1006, a prototype of synchrotron X-ray shell, but the non-thermal component of 30 Dor C is about ten-times brighter than that of SN 1006. 30 Dor C is the first candidate of an extragalactic SB, in which energetic electrons are accelerating in the shell. The age is much older than that of SN 1006, and hence the particle acceleration time in this SB may be longer than those in normal shell-like SNRs. We found point-like sources associated with some of tight star clusters. The X-ray luminosity and spectrum are consistent with those of young clusters of massive stars. Point-like sources with non-thermal spectra are also found in the SB. These may be background objects (AGNs) or stellar remnants (neutron stars or black holes).Comment: 11 pages, 6 figures, Accepted for publication in ApJ, the paper with full resolution images in http://www-cr.scphys.kyoto-u.ac.jp/member/bamba/Paper/30DorC.pd

    Young Stellar Objects and Triggered Star Formation in the Vulpecula OB Association

    Get PDF
    The Vulpecula OB association, VulOB1, is a region of active star formation located in the Galactic plane at 2.3 kpc from the Sun. Previous studies suggest that sequential star formation is propagating along this 100 pc long molecular complex. In this paper, we use Spitzer MIPSGAL and GLIMPSE data to reconstruct the star formation history of VulOB1, and search for signatures of past triggering events. We make a census of Young Stellar Objects (YSO) in VulOB1 based on IR color and magnitude criteria, and we rely on the properties and nature of these YSOs to trace recent episodes of massive star formation. We find 856 YSO candidates, and show that the evolutionary stage of the YSO population in VulOB1 is rather homogeneous - ruling out the scenario of propagating star formation. We estimate the current star formation efficiency to be ~8 %. We also report the discovery of a dozen pillar-like structures, which are confirmed to be sites of small scale triggered star formation.Comment: 30 pages, 11 figures, accepted for publication in Ap

    VLT/NACO observations of the High-Magnetic field radio pulsar PSR J1119-6127

    Full text link
    Recent radio observations have unveiled the existence of a number of radio pulsars with spin-down derived magnetic fields in the magnetar range. However, their observational properties appears to be more similar to classical radio pulsars than to magnetars. To shed light on this puzzle we first have to determine whether the spin-down derived magnetic field values for these radio pulsars are indeed representative of the actual neutron star magnetic field or if they are polluted, e.g. by the effects of a torque from a fallback disk. To investigate this possibility, we have performed deep IR observations of one of these high magnetic field radio pulsars (PSR J1119-6127) with the ESO VLT to search for IR emission which can be associated with a disk. No IR emission is detected from the pulsar position down to J=24, H=23, Ks=22. By comparing our flux upper limits with the predictions of fallback disk models, we have found that we can only exclude the presence of a disk with accretion rate dot M >3x10^16 g/s. This lower limit cannot rule out the presence of a substantial disk torque on the pulsar, which would then lead to overestimate the value of the magnetic field inferred from P and dot P.Comment: 8 pages, 4 figures, A&A, in pres

    An X-ray Census of Young Stars in the Massive Southern Star-Forming Complex NGC 6357

    Get PDF
    We present the first high spatial resolution X-ray study of the massive star forming region NGC 6357, obtained in a 38 ks Chandra/ACIS observation. Inside the brightest constituent of this large HII region complex is the massive open cluster Pismis 24. It contains two of the brightest and bluest stars known, yet remains poorly studied; only a handful of optically bright stellar members have been identified. We investigate the cluster extent and Initial Mass Function and detect ~800 X-ray sources with a limiting sensitivity of 10^{30} ergs s^{-1}; this provides the first reliable probe of the rich intermediate-mass and low-mass population of this massive cluster, increasing the number of known members from optical study by a factor of ~50. The high luminosity end (log L_h[2-8 keV]\ge 30.3 ergs s^{-1}) of the observed X-ray luminosity function in NGC 6357 is clearly consistent with a power law relation as seen in the Orion Nebula Cluster and Cepheus B, yielding the first estimate of NGC 6357's total cluster population, a few times the known Orion population. We investigate the structure of the cluster, finding small-scale substructures superposed on a spherical cluster with 6 pc extent, and discuss its relationship to the nebular morphology. The long-standing Lx - 10^{-7}L_{bol} correlation for O stars is confirmed. Twenty-four candidate O stars and one possible new obscured massive YSO or Wolf-Rayet star are presented. Many cluster members are estimated to be intermediate-mass stars from available infrared photometry (assuming an age of 1 Myr), but only a few exhibit K-band excess. We report the first detection of X-ray emission from an Evaporating Gaseous Globule at the tip of a molecular pillar; this source is likely a B0-B2 protostar.Comment: 64 pages (double columns), 9 table, 17 figures (reduced resolution), ApJ accepted. Please contact J. Wang for full table

    The Eta Chamaeleontis Cluster: Origin in the Sco-Cen OB Association

    Full text link
    A young, nearby compact aggregate of X-ray emitting pre-main sequence stars was recently discovered in the vicinity of eta Cha (B8V). In this paper, we further investigate this cluster: its membership, its environs and origins. ROSAT HRI X-ray data for the cluster's T Tauri stars show high levels of magnetic activity and variability. The cluster has an anomalous X-ray luminosity function compared to other young clusters, deficient in stars with low, but detectable X-ray luminosities. This suggests that many low-mass members have escaped the surveyed core region. Photographic photometry from the USNO-A2.0 catalog indicates that additional, X-ray-quiet members exist in the cluster core region. The components of the eclipsing binary RS Cha, previously modeled in the literature as post-MS with discordant ages, are shown to be consistent with being coeval pre-MS stars. We compute the Galactic motion of the cluster from Hipparcos data, and compare it to other young stars and associations in the fourth Galactic quadrant. The kinematic study shows that the eta Cha cluster, the TW Hya association, and a new group near epsilon Cha, probably originated near the giant molecular cloud complex that formed the two oldest subgroups of the Sco-Cen OB association roughly 10-15 Myr ago. Their dispersal is consistent with the velocity dispersions seen in giant molecular clouds. A large H I filament and dust lane located near eta Cha has been identified as part of a superbubble formed by Sco-Cen OB winds and supernova remnants. The passage of the superbubble may have terminated star-formation in the eta Cha cluster and dispersed its natal molecular gas.Comment: 26 pages, 9 figures, LaTex2.09, ApJ, in press, http://etacha.as.arizona.edu/~eem/etacha/MLF00/index.htm

    Spitzer 70 and 160-micron Observations of the Extragalactic First Look Survey

    Get PDF
    We present Spitzer 70um and 160um observations of the Spitzer extragalactic First Look Survey (xFLS). The data reduction techniques and the methods for producing co-added mosaics and source catalogs are discussed. Currently, 26% of the 70um sample and 49% of the 160um-selected sources have redshifts. The majority of sources with redshifts are star-forming galaxies at z<0.5, while about 5% have infrared colors consistent with AGN. The observed infrared colors agree with the spectral energy distribution (SEDs) of local galaxies previously determined from IRAS and ISO data. The average 160um/70um color temperature for the dust is Td~= 30+/-5 K, and the average 70um/24um spectral index is alpha~= 2.4+/-0.4. The observed infrared to radio correlation varies with redshift as expected out to z~1 based on the SEDs of local galaxies. The xFLS number counts at 70um and 160um are consistent within uncertainties with the models of galaxy evolution, but there are indications that the current models may require slight modifications. Deeper 70um observations are needed to constrain the models, and redshifts for the faint sources are required to measure the evolution of the infrared luminosity function.Comment: 16 pages including 11 figures. Accepted A

    Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    Full text link
    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young (several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known O stars. Follow-up spectroscopy of three other bow shock-producing stars showed that they are O-type stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular shells typical of luminous blue variable and late WN-type Wolf-Rayet stars.Comment: 13 pages, 16 figures, accepted for publication in A&
    • 

    corecore