336 research outputs found

    Pioglitazone Prevents Capillary Rarefaction in Streptozotocin-Diabetic Rats Independently of Glucose Control and Vascular Endothelial Growth Factor Expression

    Get PDF
    Background/Aims: Reduction of capillary network density occurs early in the development of metabolic syndrome and may be relevant for the precipitation of diabetes. Agonists of the peroxisome proliferator-activated receptor (PPAR)-gamma transcription factor are vasculoprotective, but their capacity for structural preservation of the microcirculation is unclear. Methods: Male Wistar rats were rendered diabetic by streptozotocin and treated with pioglitazone in chow for up to 12 weeks. Capillary density was determined in heart and skeletal muscle after platelet endothelial cell adhesion molecule-1 (PECAM-1) immunostaining. Hallmarks of apoptosis and angiogenesis were determined. Results: Capillary density deteriorated progressively in the presence of hyperglycemia (from 971/mm(2) to 475/mm(2) in quadriceps muscle during 13 weeks). Pioglitazone did not influence plasma glucose, left ventricular weight, or body weight but nearly doubled absolute and relative capillary densities compared to untreated controls (1.2 vs. 0.6 capillaries/myocyte in heart and 1.5 vs. 0.9 capillaries/myocyte in quadriceps muscle) after 13 weeks of diabetes. No antiapoptotic or angiogenic influence of pioglitazone was detected while a reduced expression of hypoxia-inducible factor-3 alpha and PPAR coactivator-1 alpha (PGC-1 alpha) mRNA as well as vascular endothelial growth factor (VEGF) protein possibly occurred as a consequence of improved vascularization. Conclusion: Pioglitazone preserves microvascular structure in diabetes independently of improvements in glycemic control and by a mechanism unrelated to VEGF-mediated angiogenesis. Copyright (C) 2012 S. Karger AG, Base

    Association Analysis of Variation in/Near FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, LOC387761, and CDKN2B With Type 2 Diabetes and Related Quantitative Traits in Pima Indians

    Get PDF
    OBJECTIVE—In recent genome-wide association studies, variants in CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, CDKN2B, LOC387761, and FTO were associated with risk for type 2 diabetes in Caucasians. We investigated the association of these single nucleotide polymorphisms (SNPs) and some additional tag SNPs with type 2 diabetes and related quantitative traits in Pima Indians

    Progression of Diet-Induced Diabetes in C57BL6J Mice Involves Functional Dissociation of Ca2+ Channels From Secretory Vesicles

    Get PDF
    OBJECTIVE: The aim of the study was to elucidate the cellular mechanism underlying the suppression of glucose-induced insulin secretion in mice fed a high-fat diet (HFD) for 15 weeks. RESEARCH DESIGN AND METHODS: C57BL6J mice were fed a HFD or a normal diet (ND) for 3 or 15 weeks. Plasma insulin and glucose levels in vivo were assessed by intraperitoneal glucose tolerance test. Insulin secretion in vitro was studied using static incubations and a perfused pancreas preparation. Membrane currents, electrical activity, and exocytosis were examined by patch-clamp technique measurements. Intracellular calcium concentration ([Ca(2+)](i)) was measured by microfluorimetry. Total internal reflection fluorescence microscope (TIRFM) was used for optical imaging of exocytosis and submembrane depolarization-evoked [Ca(2+)](i). The functional data were complemented by analyses of histology and gene transcription. RESULTS: After 15 weeks, but not 3 weeks, mice on HFD exhibited hyperglycemia and hypoinsulinemia. Pancreatic islet content and beta-cell area increased 2- and 1.5-fold, respectively. These changes correlated with a 20-50% reduction of glucose-induced insulin secretion (normalized to insulin content). The latter effect was not associated with impaired electrical activity or [Ca(2+)](i) signaling. Single-cell capacitance and TIRFM measurements of exocytosis revealed a selective suppression (>70%) of exocytosis elicited by short (50 ms) depolarization, whereas the responses to longer depolarizations were (500 ms) less affected. The loss of rapid exocytosis correlated with dispersion of Ca(2+) entry in HFD beta-cells. No changes in gene transcription of key exocytotic protein were observed. CONCLUSIONS: HFD results in reduced insulin secretion by causing the functional dissociation of voltage-gated Ca(2+) entry from exocytosis. These observations suggest a novel explanation to the well-established link between obesity and diabetes

    Study Protocol: insulin and its role in cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies have shown that metabolic syndrome and its consequent biochemical derangements in the various phases of diabetes may contribute to carcinogenesis. A part of this carcinogenic effect could be attributed to hyperinsulinism. High levels of insulin decrease the production of IGF-1 binding proteins and hence increase levels of free IGF-1. It is well established that bioactivity of free insulin growth factor 1 (IGF-1) increases tumor turnover rate. The objective is to investigate the role of insulin resistance/sensitivity in carcinogenesis by studying the relation between insulin resistance/sensitivity and IGF-1 levels in cancer patients. We postulate that hyperinsulinaemia which prevails during initial phases of insulin resistance (condition prior to overt diabetes) increases bioactivity of free IGF-1, which may contribute to process of carcinogenesis.</p> <p>Methods/Design</p> <p>Based on our pilot study results and power analysis of the same, we have designed a two group case-control study. 800 proven untreated cancer patients (solid epithelial cell tumors) under age of 50 shall be recruited with 200 healthy subjects serving as controls. Insulin resistance/sensitivity and free IGF-1 levels shall be determined in all subjects. Association between the two parameters shall be tested using suitable statistical methods.</p> <p>Discussion</p> <p>Well controlled studies in humans are essential to study the link between insulin resistance, hyperinsulinaemia, IGF-1 and carcinogenesis. This study could provide insights to the role of insulin, insulin resistance, IGF-1 in carcinogenesis although a precise role and the extent of influence cannot be determined. In future, cancer prevention and treatment strategies could revolve around insulin and insulin resistance.</p
    corecore