324 research outputs found
Drivers and barriers to a green economy. A review of selected balkan countries
Abstract Balkan countries typically share remarkable similarities in culture and history. However, this specific region received little academic attention and produced fewer scholarly deals with the green economy. Our intended purpose is to gather the most recent literature on the green economy about Slovenia, Croatia, Serbia and Bosnia and Herzegovina, which are also produced in local Universities and show that these countries possess the potential for an easy green conversion despite barriers and lack of sufficient motivation; The first two countries as mentioned above are members of the EU, while the other two have an EU candidate status. We obtained national experts' opinions and policy recommendations through a Scopus database search (mostly) 2015–2020. Through a SWOT analysis matrix, we gather evidence of both internal and external pushes. The first push is the role of national institutions and consumers; the latter is the EU's considerable influence, which provides essential incentives to carefully foster alignment with European regulatory standards. The internal push typically bears more social responsibility in shaping domestic policies and going green. In Croatia and Slovenia, the transition towards a greener economy goes ahead positively; in Bosnia and Herzegovina, Serbia and Slovenia, the lack of adequate policies and awareness (among people and companies) and the inefficient allocation of external resources remain barriers to such a greener transition. These Balkan countries deserve more attention in the academic literature, both theoretical and empirical, thanks to their unexploited green potential, which could help policymakers make their countries greener
Predictive diagnostics and personalized medicine for the prevention of chronic degenerative diseases
Progressive increase of mean age and life expectancy in both industrialized and emerging societies parallels an increment of chronic degenerative diseases (CDD) such as cancer, cardiovascular, autoimmune or neurodegenerative diseases among the elderly. CDD are of complex diagnosis, difficult to treat and absorbing an increasing proportion in the health care budgets worldwide. However, recent development in modern medicine especially in genetics, proteomics, and informatics is leading to the discovery of biomarkers associated with different CDD that can be used as indicator of disease’s risk in healthy subjects. Therefore, predictive medicine is merging and medical doctors may for the first time anticipate the deleterious effect of CDD and use markers to identify persons with high risk of developing a given CDD before the clinical manifestation of the diseases. This innovative approach may offer substantial advantages, since the promise of personalized medicine is to preserve individual health in people with high risk by starting early treatment or prevention protocols. The pathway is now open, however the road to an effective personalized medicine is still long, several (diagnostic) predictive instruments for different CDD are under development, some ethical issues have to be solved. Operative proposals for the heath care systems are now needed to verify potential benefits of predictive medicine in the clinical practice. In fact, predictive diagnostics, personalized medicine and personalized therapy have the potential of changing classical approaches of modern medicine to CDD
Isolation and full-length genome characterization of Sarscov-2 from covid-19 cases in northern Italy
N/
Blood microbiome: A new marker of gut microbial population in dogs?
The characterization of the microbial population in different compartments of the organism, such as the gastrointestinal tract, is now possible thanks to the use of high-throughput DNA sequencing technique. Several studies in the companion animals field have already investigated the fecal microbiome in healthy or sick subjects; however, the methodologies used in the different laboratories and the limited number of animals recruited in each experiment do not allow a straight comparison among published results. Previously, our research focused on the characterization of the microbial taxa variability in 340 fecal samples from 132 healthy dogs, collected serially from several in-house experiments. The results supported the responsiveness of microbiota to dietary and sex factors and allowed us to cluster dogs with high accuracy. For the present study, intestinal and blood microbiota of healthy dogs from different breeds, genders, ages and food habits were collected, with three principal aims: firstly, to confirm the results of our previous study regarding the fecal microbiome affected by the different type of diet; secondly, to investigate the existence of a blood microbial population, even in heathy subjects; and thirdly, to seek for a possible connection between the fecal and the blood microbiota. Limited researches have been published on blood microbiota in humans, and this is the first evidence of the presence of a bacterial population in the blood of dogs. Moreover, gut and blood microbiota can discriminate the animals by factors such as diet, suggesting some relationship between them. These preliminary results make us believe in the use of the blood microbiome for diagnostic purposes, such as researching and preventing gut inflammatory diseases
Inflammation, genetic background and longevity
Ageing is an inexorable intrinsic process
that affects all cells, tissues, organs and individuals.
Due to a diminished homeostasis and increased
organism frailty, ageing causes a reduction of the
response to environmental stimuli and, in general, is
associated to an increased predisposition to illness and
death. Actually, it is characterized by a state of reduced
ability to maintain health and general homeodynamics
of the organism.Alarge part of the ageing phenotype is
explained by an imbalance between inflammatory and
anti-inflammatory networks, which results in the low
grade chronic pro-inflammatory status of ageing,
‘‘inflamm-ageing’’. It is strictly linked to immunosenescence,
and on the whole they are the major
contributory factors to the increased frequency of
morbidity and mortality among elderly. Inflammageing
is compatible with longevity; even if centenarians
have an increased level of inflammatory mediators
in comparison to old subjects and they are very frail,
they also have high level of anti-inflammatory cytokines
together with protective genotypes. Actually,
data on case control studies performed in Italian
centenarians suggest that a pro-inflammatory genotype
is unfavourable to reach extreme longevity in good
health and likely favours the onset of age-related
diseases such as cardiovascular diseases and Alzheimer’s
disease, the leading causes of mortality and
disability in the elderly. However, many associations
between gene variants and longevity have been found
only in Italian population. This should not be unexpected,
since ageing and longevity are complex traits
resulting not only and not exclusively from genetics,
but rather from the interactions between genetics,
environment and chance
SerpinA3N is a novel hypothalamic gene upregulated by a high-fat diet and leptin in mice
Background: Energy homeostasis is regulated by the hypothalamus but fails when animals are fed a high-fat diet (HFD), and leptin insensitivity and obesity develops. To elucidate the possible mechanisms underlying these effects, a microarray-based transcriptomics approach was used to identify novel genes regulated by HFD and leptin in the mouse hypothalamus. Results: Mouse global array data identified serpinA3N as a novel gene highly upregulated by both a HFD and leptin challenge. In situ hybridisation showed serpinA3N expression upregulation by HFD and leptin in all major hypothalamic nuclei in agreement with transcriptomic gene expression data. Immunohistochemistry and studies in the hypothalamic clonal neuronal cell line, mHypoE-N42 (N42), confirmed that alpha 1-antichymotrypsin (α1AC), the protein encoded by serpinA3, is localised to neurons and revealed that it is secreted into the media. SerpinA3N expression in N42 neurons is upregulated by palmitic acid and by leptin, together with IL-6 and TNFα, and all three genes are downregulated by the anti-inflammatory monounsaturated fat, oleic acid. Additionally, palmitate upregulation of serpinA3 in N42 neurons is blocked by the NFκB inhibitor, BAY11, and the upregulation of serpinA3N expression in the hypothalamus by HFD is blunted in IL-1 receptor 1 knockout (IL-1R1−/−) mice. Conclusions: These data demonstrate that serpinA3 expression is implicated in nutritionally mediated hypothalamic inflammation
Role of prothrombotic polymorphisms in successful or unsuccessful aging
The study of the genetic profile of
centenarians aims to identify the genes and allelic variants which may influence a greater life expectancy
and that can be considered as predisposing factors associated to the aging diseases, such as Alzheimer. Centenarians, that represent a cohort of
selected survivors, show an hypercoagulability state characterised by striking signs of high coagulation
enzyme activity, as directly assessed by the tested higher plasma level of some important factors involved in the haemostasis balance. Anyway, these
individuals seem to have a reduced susceptibility to dementia, as well as to cardiovascular events. In this
study we analyze the frequencies of Leiden Factor V polymorphism (G1691A), and G20210A of prothrombin (FII) in three cohorts of subjects: patients
with Alzheimer\u2019s disease (unsuccessful aging), nonagenarians (successful aging) and young healthy controls, to assess whether allelic variants associated to the modification of haemostatic system function,
may play a role in the protection or susceptibility to Alzheimer disease, as well as to reach a successful aging. No significant differences were observed in the frequencies of the three groups studied. These results indicate that the presence or absence of the gene
variants examined did not influence the achievement of advanced age and are not risk factors for Alzheimer\u2019s disease. The state of hypercoagulability and the
possession of these risk alleles appear to be compatible with the achievement of longevity and are not implied as risk factors in Alzheimer disease
development
Insulin and serine metabolism as sex-specific hallmarks of Alzheimer's disease in the human hippocampus
Healthy aging is an ambitious aspiration for humans, but neurodegenerative disorders, such as Alzheimer's disease (AD), strongly affect quality of life. Using an integrated omics approach, we investigate alterations in the molecular composition of postmortem hippocampus samples of healthy persons and individuals with AD. Profound differences are apparent between control and AD male and female cohorts in terms of up- and downregulated metabolic pathways. A decrease in the insulin response is evident in AD when comparing the female with the male group. The serine metabolism (linked to the glycolytic pathway and generating the N-methyl-D-aspartate [NMDA] receptor coagonist D-serine) is also significantly modulated: the D-Ser/total serine ratio represents a way to counteract age-related cognitive decline in healthy men and during AD onset in women. These results show how AD changes and, in certain respects, almost reverses sex-specific proteomic and metabolomic profiles, highlighting how different pathophysiological mechanisms are active in men and women
Inflammatory and Immunological parameters in adults with Down syndrome
<p>Abstract</p> <p>Background</p> <p>The increase in life expectancy within the general population has resulted in an increasing number of elderly adults, including patients with Down syndrome (DS), with a current life expectancy of about 50 years. We evaluate the parameters of humoral and cellular immune response, the quantitative expression of the regulator of calcineurin1 gene (RCAN1) and the production of cytokines. The study group consisted of adults DS (n = 24) and a control group with intellectual disability without Down syndrome (ID) (n = 21) and living in a similar environmental background. It was evaluated serology, immunophenotyping, the quantitative gene expression of RCAN1 and the production of cytokines.</p> <p>Results</p> <p>In the DS group, the results showed an increase in NK cells, CD8, decreased CD19 (p < 0.05) and an increase spontaneous production of IFNgamma, TNFalpha and IL-10 (p < 0.05). There was not any difference in RCAN1 gene expression between the groups.</p> <p>Conclusions</p> <p>These data suggest a similar humoral response in the two groups. The immunophenotyping suggests sign of premature aging of the immune system and the cytokine production show a proinflammatory profile.</p
Gene expression profiling in white blood cells reveals new insights into the molecular mechanisms of thalidomide in children with inflammatory bowel disease
Thalidomide has emerged as an effective immunomodulator in the treatment of pediatric patients with inflammatory bowel disease (IBD) refractory to standard therapies. Cereblon (CRBN), a component of E3 protein ligase complex that mediates ubiquitination and proteasomal degradation of target proteins, has been identified as the primary target of thalidomide. CRBN plays a crucial role in thalidomide teratogenicity, however it is unclear whether it is also involved in the therapeutic effects in IBD patients. This study aimed at identifying the molecular mechanisms underpinning thalidomide action in pediatric IBD. In this study, ten IBD pediatric patients responsive to thalidomide were prospectively enrolled. RNA-sequencing (RNA-seq) analysis and functional enrichment analysis were carried out on peripheral blood mononuclear cells (PBMC) obtained before and after twelve weeks of treatment with thalidomide. RNA-seq analysis revealed 378 differentially expressed genes before and after treatment with thalidomide. The most deregulated pathways were cytosolic calcium ion concentration, cAMP-mediated signaling, eicosanoid signaling and inhibition of matrix metalloproteinases. Neuronal signaling mechanisms such as CREB signaling in neurons and axonal guidance signaling also emerged. Connectivity Map analysis revealed that thalidomide gene expression changes were similar to those exposed to MLN4924, an inhibitor of NEDD8 activating enzyme, suggesting that thalidomide exerts its immunomodulatory effects by acting on the ubiquitin-proteasome pathway. In vitro experiments on cell lines confirmed the effect of thalidomide on candidate altered pathways observed in patients. These results represent a unique resource for enhanced understanding of thalidomide mechanism in pediatric patients with IBD, providing novel potential targets associated with drug response
- …
