193 research outputs found

    Plastic Deformation in Laser-Induced Shock Compression of Monocrystalline Copper

    Get PDF
    Copper monocrystals were subjected to shock compression at pressures of 10–60 GPa by a short (3 ns initial) duration laser pulse. Transmission electron microscopy revealed features consistent with previous observations of shock-compressed copper, albeit at pulse durations in the µs regime. The results suggest that the defect structure is generated at the shock front. A mechanism for dislocation generation is presented, providing a realistic prediction of dislocation density as a function of pressure. The threshold stress for deformation twinning in shock compression is calculated from the constitutive equations for slip, twinning, and the Swegle-Grady relationship

    Tension capnothorax during laparoscopic transhiatal oesophagectomy – A case report

    Get PDF
    Minimally invasive transhiatal oesophagectomy (THE) is a common operative procedure for carcinoma of the oesophagus. This technique has many advantages over other surgical approaches to oesophagectomy. Common complications associated with THE are pulmonary in nature and can lead to increased morbidity and mortality. We present a case where a tension capnothorax developed during laparoscopic THE

    AUTOMATIC METER READING FOR ELECTRICITY USING POWER LINE COMMUNICATION

    Get PDF
    Abstract: As in every where automation is required to reduce the work so we decided to implement to automatic meter reading using power line communication. AMR is the modern Power measuring device .It is being used in measuring electricity , gas , water consumption in many countries on the world since it has a lot of advantages that the old analog meters doesn't have. It has advantages in safety , real time measuring and time saving as well as it has a better user interface and digital data analysis .Data is send over existing carrier thats reduces the complexity and cost of system

    Crystal structure of monomeric human β-2- microglobulin reveals clues to its amyloidogenic properties

    Get PDF
    Dissociation of human β-2-microglobulin (β(2)m) from the heavy chain of the class I HLA complex is a critical first step in the formation of amyloid fibrils from this protein. As a consequence of renal failure, the concentration of circulating monomeric β(2)m increases, ultimately leading to deposition of the protein into amyloid fibrils and development of the disorder, dialysis-related amyloidosis. Here we present the crystal structure of a monomeric form of human β(2)m determined at 1.8-Å resolution that reveals remarkable structural changes relative to the HLA-bound protein. These involve the restructuring of a β bulge that separates two short β strands to form a new six-residue β strand at one edge of this β sandwich protein. These structural changes remove key features proposed to have evolved to protect β sheet proteins from aggregation [Richardson, J.&Richardson, D. (2002) Proc. Natl. Acad. Sci. USA 99, 2754–2759] and replaces them with an aggregationcompetent surface. In combination with solution studies using (1)H NMR, we show that the crystal structure presented here represents a rare species in solution that could provide important clues about the mechanism of amyloid formation from the normally highly soluble native protein

    Amyloid fibril length distribution quantified by atomic force microscopy single-particle image analysis

    Get PDF
    Amyloid fibrils are proteinaceous nano-scale linear aggregates. They are of key interest not only because of their association with numerous disorders, such as type II diabetes mellitus, Alzheimer's and Parkinson's diseases, but also because of their potential to become engineered high-performance nano-materials. Methods to characterise the length distribution of nano-scale linear aggregates such as amyloid fibrils are of paramount importance both in understanding the biological impact of these aggregates and in controlling their mechanical properties as potential nano-materials. Here, we present a new quantitative approach to the determination of the length distribution of amyloid fibrils using tapping-mode atomic force microscopy. The method described employs single-particle image analysis corrected for the length-dependent bias that is a common problem associated with surface-based imaging techniques. Applying this method, we provide a detailed characterisation of the length distribution of samples containing long-straight fibrils formed in vitro from β2-microglobulin. The results suggest that the Weibull distribution is a suitable model in describing fibril length distributions, and reveal that fibril fragmentation is an important process even under unagitated conditions. These results demonstrate the significance of quantitative length distribution measurements in providing important new information regarding amyloid assembly

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA
    corecore