358 research outputs found
Brain Activation by Visual Food-Related Stimuli and Correlations with Metabolic and Hormonal Parameters: A fMRI Study
Regional brain activity in 15 healthy, normal weight males during processing of visual food stimuli in a satiated and a hungry state was examined and correlated with neuroendocrine factors known to be involved in hunger and satiated states. Two functional Magnetic Resonance Imaging (fMRI) sessions were performed with a one week interval, after overnight fasting or 1 hour after a standardized meal. Blood samples and appetite assessment were obtained after each fMRI session. Main effects of processing food versus non-food stimuli were observed in the ventral visual stream, including the fusiform gyrus and hippocampal areas bilaterally, significantly more in the fasting state. Leptin concentration correlated negatively with activity in the left hippocampal area and right insula during the satiation condition. A positive correlation between ghrelin and "thought of food" hunger scores were found. The positive correlation between ghrelin and food related activation in the insula areas and the right hippocampus during fasting did not reach significance. Conclusion: The increased activation of food vs non-food pictures in the ventral visual stream reflects increased salience of food pictures when subjects are hungry. Leptin was associated with activations in areas involved in processing of new information and emotion. © Jakobsdottir et al
Dense seismic network provides new insight into the 2007 Upptyppingar dyke intrusion
Factors such as network geometry, network size and phase-picking accuracy have significant\ud
effects on the precision of seismic hypocentre locations. In turn, the precision of the hypocentral locations\ud
dictates the degree to which morphological details within seismic swarms may be resolved. The Icelandic\ud
national seismic network (SIL) is designed to monitor seismic activity across large expanses of Iceland in realtime\ud
using automated earthquake detection and location software. Here we examine the performance of the\ud
SIL network relative to a much denser, local network of seismometers deployed around the Askja volcano in\ud
the Northern Volcanic Zone. A subset of earthquakes from the 2007–2008 dyke intrusion beneath Mt. Upptyppingar\ud
is used to compare single- and multi-event hypocentral locations. Specifically, we highlight 288, high\ud
signal-to-noise ratio events that occurred during an intensive sequence of earthquakes from 6–24 July 2007,\ud
when the temporary Askja network was active. A careful refinement of phase onsets recorded by our wellconfigured,\ud
dense network of receivers reveals hypocentres clustered tightly on a planar structure, interpreted\ud
as a dyke dipping at 49. The root-mean-square (RMS) misfit to the plane (114 m) is only slightly greater than\ud
the uncertainties in relative locations of the earthquakes themselves, and constitutes a three-fold reduction in\ud
RMS misfit over SIL relative locations. The improved precision, facilitated predominantly by a more favourable\ud
network size and configuration, permits a more detailed analysis of the intrusion
Synthesis and propagation of complement C3 by microglia/monocytes in the aging retina
INTRODUCTION Complement activation is thought to contribute to the pathogenesis of age-related macular degeneration (AMD), which may be mediated in part by para-inflammatory processes. We aimed to investigate the expression and localization of C3, a crucial component of the complement system, in the retina during the course of aging. METHODS SD rats were born and reared in low-light conditions, and euthanized at post-natal (P) days 100, 450, or 750. Expression of C3, IBA1, and Ccl- and Cxcl- chemokines was assessed by qPCR, and in situ hybridization. Thickness of the ONL was assessed in retinal sections as a measure of photoreceptor loss, and counts were made of C3-expressing monocytes. RESULTS C3 expression increased significantly at P750, and correlated with thinning of the ONL, at P750, and up-regulation of GFAP. In situ hybridization showed that C3 was expressed by microglia/monocytes, mainly from within the retinal vasculature, and occasionally the ONL. The number of C3-expressing microglia increased significantly by P750, and coincided spatiotemporally with thinning of the ONL, and up-regulation of Ccl- and Cxcl- chemokines. CONCLUSIONS Our data suggest that recruited microglia/monocytes contribute to activation of complement in the aging retina, through local expression of C3 mRNA. C3 expression coincides with age-related thinning of the ONL at P750, although it is unclear whether the C3-expressing monocytes are a cause or consequence. These findings provide evidence of activation of complement during natural aging, and may have relevance to cellular events underling the pathogenesis of age-related retinal diseases.Funding provided by Australian Research Council Centres of Excellence Program Grant (CE0561903)
Recommended from our members
Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients
The systematic review demonstrates that the IM plays a major role in the breakdown and transformation of the dietary substrates examined. However, recent human data are limited with the exception of data from studies examining fibres and polyphenols. Results observed in relation with dietary substrates were not always consistent or coherent across studies and methodological limitations and differences in IM analyses made comparisons difficult. Moreover, non-digestible components likely to reach the colon are often not well defined or characterised in studies making comparisons between studies difficult if not impossible. Going forward, further rigorously controlled randomised human trials with well-defined dietary substrates and utilizing omic-based technologies to characterise and measure the IM and their functional activities will advance the field. Current evidence suggests that more detailed knowledge of the metabolic activities and interactions of the IM hold considerable promise in relation with host health
Crustal structure beneath western and eastern Iceland from surface waves and receiver functions
We determine the crustal structures beneath 14 broad-band seismic stations, deployed in western, eastern, central and southern Iceland, using surface wave dispersion curves and receiver functions. We implement a method to invert receiver functions using constraints obtained from genetic algorithm inversion of surface waves. Our final models satisfy both data sets. The thickness of the upper crust, as defined by the velocity horizon Vs= 3.7 km s−1, is fairly uniform at ∼6.5–9 km beneath the Tertiary intraplate areas of western and eastern Iceland, and unusually thick at 11 km beneath station HOT22 in the far south of Iceland. The depth to the base of the lower crust, as defined by the velocity horizon Vs= 4.1 km s−1 is ∼20–26 km in western Iceland and ∼27–33 km in eastern Iceland. These results agree with those of explosion profiles that detect a thinner crust beneath western Iceland than beneath eastern Iceland. An earlier report of a substantial low-velocity zone beneath the Middle Volcanic Zone in the lower crust is confirmed by a similar observation beneath an additional station there. As was found in previous receiver function studies, the most reliable feature of the results is the clear division into an upper sequence that is a few kilometres thick where velocity gradients are high, and a lower, thicker sequence where velocity gradients are low. The transition to typical mantle velocities is variable, and may range from being very gradational to being relatively sharp and clear. A clear Moho, by any definition, is rarely seen, and there is thus uncertainty in estimates of the thickness of the crust in many areas. Although a great deal of seismic data are now available constraining the structures of the crust and upper mantle beneath Iceland, their geological nature is not well understood
APOBEC3 mutational signatures are associated with extensive and diverse genomic instability across multiple tumour types
Background: The APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypeptide 3) family of cytidine deaminases is responsible for two mutational signatures (SBS2 and SBS13) found in cancer genomes. APOBEC3 enzymes are activated in response to viral infection, and have been associated with increased mutation burden and TP53 mutation. In addition to this, it has been suggested that APOBEC3 activity may be responsible for mutations that do not fall into the classical APOBEC3 signatures (SBS2 and SBS13), through generation of double strand breaks.Previous work has mainly focused on the effects of APOBEC3 within individual tumour types using exome sequencing data. Here, we use whole genome sequencing data from 2451 primary tumours from 39 different tumour types in the Pan-Cancer Analysis of Whole Genomes (PCAWG) data set to investigate the relationship between APOBEC3 and genomic instability (GI). Results and conclusions: We found that the number of classical APOBEC3 signature mutations correlates with increased mutation burden across different tumour types. In addition, the number of APOBEC3 mutations is a significant predictor for six different measures of GI. Two GI measures (INDELs attributed to INDEL signatures ID6 and ID8) strongly suggest the occurrence and error prone repair of double strand breaks, and the relationship between APOBEC3 mutations and GI remains when SNVs attributed to kataegis are excluded. We provide evidence that supports a model of cancer genome evolution in which APOBEC3 acts as a causative factor in the development of diverse and widespread genomic instability through the generation of double strand breaks. This has important implications for treatment approaches for cancers that carry APOBEC3 mutations, and challenges the view that APOBECs only act opportunistically at sites of single stranded DNA
Chromothripsis orchestrates leukemic transformation in blast phase MPN through targetable amplification of DYRK1A
Chromothripsis, the process of catastrophic shattering and haphazard repair of chromosomes, is a common event in cancer. Whether chromothripsis might constitute an actionable molecular event amenable to therapeutic targeting remains an open question. We describe recurrent chromothripsis of chromosome 21 in a subset of patients in blast phase of a myeloproliferative neoplasm (BP-MPN), which alongside other structural variants leads to amplification of a region of chromosome 21 in ∼25% of patients (‘chr21amp’). We report that chr21amp BP-MPN has a particularly aggressive and treatment-resistant phenotype. The chr21amp event is highly clonal and present throughout the hematopoietic hierarchy. DYRK1A, a serine threonine kinase and transcription factor, is the only gene in the 2.7Mb minimally amplified region which showed both increased expression and chromatin accessibility compared to non-chr21amp BP-MPN controls. We demonstrate that DYRK1A is a central node at the nexus of multiple cellular functions critical for BP-MPN development, including DNA repair, STAT signalling and BCL2 overexpression. DYRK1A is essential for BP-MPN cell proliferation in vitro and in vivo, and DYRK1A inhibition synergises with BCL2 targeting to induce BP-MPN cell apoptosis. Collectively, these findings define the chr21amp event as a prognostic biomarker in BP-MPN and link chromothripsis to a druggable target
Genetic and Functional Dissection of HTRA1 and LOC387715 in Age-Related Macular Degeneration
A common haplotype on 10q26 influences the risk of age-related macular degeneration (AMD) and encompasses two genes, LOC387715 and HTRA1. Recent data have suggested that loss of LOC387715, mediated by an insertion/deletion (in/del) that destabilizes its message, is causally related with the disorder. Here we show that loss of LOC387715 is insufficient to explain AMD susceptibility, since a nonsense mutation (R38X) in this gene that leads to loss of its message resides in a protective haplotype. At the same time, the common disease haplotype tagged by the in/del and rs11200638 has an effect on the transcriptional upregulation of the adjacent gene, HTRA1. These data implicate increased HTRA1 expression in the pathogenesis of AMD and highlight the importance of exploring multiple functional consequences of alleles in haplotypes that confer susceptibility to complex traits
Genotype-informed estimation of risk of coronary heart disease based on genome-wide association data linked to the electronic medical record
<p>Abstract</p> <p>Background</p> <p>Susceptibility variants identified by genome-wide association studies (GWAS) have modest effect sizes. Whether such variants provide incremental information in assessing risk for common 'complex' diseases is unclear. We investigated whether measured and imputed genotypes from a GWAS dataset linked to the electronic medical record alter estimates of coronary heart disease (CHD) risk.</p> <p>Methods</p> <p>Study participants (<it>n </it>= 1243) had no known cardiovascular disease and were considered to be at high, intermediate, or low 10-year risk of CHD based on the Framingham risk score (FRS) which includes age, sex, total and HDL cholesterol, blood pressure, diabetes, and smoking status. Of twelve SNPs identified in prior GWAS to be associated with CHD, four were genotyped in the participants as part of a GWAS. Genotypes for seven SNPs were imputed from HapMap CEU population using the program MACH. We calculated a multiplex genetic risk score for each patient based on the odds ratios of the susceptibility SNPs and incorporated this into the FRS.</p> <p>Results</p> <p>The mean (SD) number of risk alleles was 12.31 (1.95), range 6-18. The mean (SD) of the weighted genetic risk score was 12.64 (2.05), range 5.75-18.20. The CHD genetic risk score was not correlated with the FRS (<it>P </it>= 0.78). After incorporating the genetic risk score into the FRS, a total of 380 individuals (30.6%) were reclassified into higher-(188) or lower-risk groups (192).</p> <p>Conclusion</p> <p>A genetic risk score based on measured/imputed genotypes at 11 susceptibility SNPs, led to significant reclassification in the 10-y CHD risk categories. Additional prospective studies are needed to assess accuracy and clinical utility of such reclassification.</p
C2 and CFB Genes in Age-Related Maculopathy and Joint Action with CFH and LOC387715 Genes
BackgroundAge-related maculopathy (ARM) is a common cause of visual impairment in the elderly populations of industrialized countries and significantly affects the quality of life of those suffering from the disease. Variants within two genes, the complement factor H (CFH) and the poorly characterized LOC387715 (ARMS2), are widely recognized as ARM risk factors. CFH is important in regulation of the alternative complement pathway suggesting this pathway is involved in ARM pathogenesis. Two other complement pathway genes, the closely linked complement component receptor (C2) and complement factor B (CFB), were recently shown to harbor variants associated with ARM.Methods/principal findingsWe investigated two SNPs in C2 and two in CFB in independent case-control and family cohorts of white subjects and found rs547154, an intronic SNP in C2, to be significantly associated with ARM in both our case-control (P-value 0.00007) and family data (P-value 0.00001). Logistic regression analysis suggested that accounting for the effect at this locus significantly (P-value 0.002) improves the fit of a genetic risk model of CFH and LOC387715 effects only. Modeling with the generalized multifactor dimensionality reduction method showed that adding C2 to the two-factor model of CFH and LOC387715 increases the sensitivity (from 63% to 73%). However, the balanced accuracy increases only from 71% to 72%, and the specificity decreases from 80% to 72%.Conclusions/significanceC2/CFB significantly influences AMD susceptibility and although accounting for effects at this locus does not dramatically increase the overall accuracy of the genetic risk model, the improvement over the CFH-LOC387715 model is statistically significant
- …
