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Abstract

Introduction: Complement activation is thought to contribute to the pathogenesis of age-related macular degeneration
(AMD), which may be mediated in part by para-inflammatory processes. We aimed to investigate the expression and
localization of C3, a crucial component of the complement system, in the retina during the course of aging.

Methods: SD rats were born and reared in low-light conditions, and euthanized at post-natal (P) days 100, 450, or 750.
Expression of C3, IBA1, and Ccl- and Cxcl- chemokines was assessed by qPCR, and in situ hybridization. Thickness of the ONL
was assessed in retinal sections as a measure of photoreceptor loss, and counts were made of C3-expressing monocytes.

Results: C3 expression increased significantly at P750, and correlated with thinning of the ONL, at P750, and up-regulation
of GFAP. In situ hybridization showed that C3 was expressed by microglia/monocytes, mainly from within the retinal
vasculature, and occasionally the ONL. The number of C3-expressing microglia increased significantly by P750, and
coincided spatiotemporally with thinning of the ONL, and up-regulation of Ccl- and Cxcl- chemokines.

Conclusions: Our data suggest that recruited microglia/monocytes contribute to activation of complement in the aging
retina, through local expression of C3 mRNA. C3 expression coincides with age-related thinning of the ONL at P750,
although it is unclear whether the C3-expressing monocytes are a cause or consequence. These findings provide evidence
of activation of complement during natural aging, and may have relevance to cellular events underling the pathogenesis of
age-related retinal diseases.
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Introduction

Aging involves the gradual accumulation of changes associated

with a heightened vulnerability to various diseases [1,2]. Age-

related macular degeneration (AMD) is a leading cause of

blindness in people aged over 65 [3], with estimated worldwide

prevalence of 30 to 50 million [4] which is expected to increase

substantially in coming decades [5]. Involvement of inflammatory

processes in the pathogenesis of AMD has been steadily accruing

for many years [6,7,8,9,10,11]. In recent times, identification of

involvement of the complement system has firmly placed

inflammation as a key factor influencing the onset and progression

of AMD [12,13].

The complement system is a component of the innate immune

response providing a rapid host defence against a range of

immunological challenges, and aiding in the maintenance of

homeostasis (Reviewed in [14,15]). Despite this beneficial function,

a pathogenic role of the complement system in AMD has been

revealed through a string of seminal gene association studies.

These identified a significant association between the Y402H

sequence variant in the regulatory gene complement factor H

(CFH) with the incidence of AMD [16,17,18,19], along with other

susceptibility variants in complement pathway genes C2 [12,20],

CFB [12,20], and the central component C3 [21,22,23,24,25] in

later studies. However, a number of key aspects of the disease

process remain unclear, including the cellular events that

synthesise and promote complement activity in the retina

(reviewed in [12]).

Recently, the concept of para-inflammation – a state of low-

grade chronic inflammation – has gained considerable attention as

a factor in the development of age-related diseases [26,27]. Para-

inflammation is thought to occur in tissues under noxious stress,

including accumulation of free radicals during aging [1], and acts

as an immunological mechanism to maintain tissue homeostasis

[26]. However, this response is not stable and in aging persistent

factors may promote a chronic dysregulation of para-inflamma-

tion, leading to pathology [26,28]. As such, para-inflammation in

the aging retina may play a role in the pathology of age-related

retinopathies such as AMD [26,28]. Significantly, expression of

various complement components, including C3, has been shown

to increase with age in mice [28], although the cellular

mechanisms which mediate the elevation of complement in aging

are presently unknown [28].
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In previous studies we have used a rat model of retinal light

damage to gain an understanding of how the retina responds to

damage, specifically the expression and localisation of inflamma-

tory mediators from complement and chemokine pathways

[29,30,31,32]. These investigations have shown – for the first

time – that retinal monocytes/microglia synthesise C3 and deposit

it in the outer retina during damage [30]. In the current study, we

aim to describe the normal aging process in rats of the same strain

as used in our light damage model, in order to clarify the factors

which may promote chronic complement synthesis. Our results

show that C3 mRNA is expressed by microglia/monocytes in the

retina which gradually increase in number over the course of

normal aging. This coincides spatiotemporally with thinning of the

ONL at P750 and up-regulation of chemokines with age, although

the casual role C3-expressing monocytes/microglia in these

processes is unclear. These data inform our understanding of

complement activity in the context of normal aging of the retina in

our model, and may also provide insight into the complement-

related processes in diseases such as AMD.

Methods

Rearing Conditions, Tissue Collection and Processing
The study was approved by the Animal Experimentation Ethics

Committee (AEEC) of the Australian National University

(R.BSB.05.10). All experiments conducted were in accordance

with the ARVO Statement for the Use of Animals in Ophthalmic

and Vision Research. Sprague-Dawley (SD) rats were born and

reared in low-light conditions (5 lux) for 100, 450, or 750 post-

natal days (P), with food and water provided ad libitum.

At the appropriate age, animals were euthanized by overdose of

barbiturate administered by an intraperitoneal injection (60 mg/

kg bodyweight, Valabarb; Virbac, Australia) which also included

2% lidocaine (Troy Laboratories, NSW, Australia) to minimize

animal suffering. The left eye from each animal was marked at the

superior surface for orientation then enucleated and processed for

cryosectioning, while the retina from right eye was excised through

a corneal incision and prepared for RNA extraction. Eyes

collected for cryosectioning were quickly immersion-fixed in 4%

paraformaldehyde in 0.1 M PBS (pH 7.3) for 3 hours at room

temperature, then processed as described previously [31], and

cryosectioned at 16 mm. Retinas for RNA extraction were

immediately immersed in chilled RNAlater solution (Ambion,

Austin, TX), then stored in accordance with the manufacturer’s

instructions. The RNA samples were then extracted and analysed

following a previously established methodology [29,33].

Quantitative Real Time Polymerase Chain Reaction
(qPCR)
Quantitative PCR was used to measure expression of C3, 6

chemokines, and two house-keeping genes (Table 1). First-strand

cDNA synthesis was performed as described previously [29]. Gene

amplification was measured using commercially available Taq-

Man hydrolysis probes (Applied Biosystems, Foster City, CA), the

details of which are provided in Table 1. The hydrolysis probes

were applied in accordance with a previously established qPCR

protocol [29]. The fold change was determined using the DDCq

method where the expression of the target gene was normalised

relative to the expression of two reference genes – glyceraldehyde-

3-phosphate dehydrogenase (GAPDH), and Actin beta (Actb).

Previous studies have shown that expression of GAPDH and Actb

does not change with respect to age in either the retina or brain

[34,35]. Amplification specificity of each primer pair was assessed

using gel electrophoresis.

ONL Thickness Measurements
Thickness of the ONL was used to measure photoreceptor loss

in each age group. ONL thickness was measured in 1 mm

increments along the full-length of retinal cryosections cut in the

para-saggital plane (superio-inferior), close to the vertical merid-

ian. The DNA-specific dye bisbenzamide (Calbiochem, La Jolla,

CA) was used to visualize the cellular layers. ONL thickness was

calculated as the ratio of ONL thickness to the distance between

the outer- and inner- limiting membranes (OLM-ILM), to take

into account any obliquely cut sections or regions. The total ONL

ratio from each retina is the average of 3 retina sections at

comparable locations.

In situ Hybridisation
To investigate localisation of C3 mRNA transcripts, a

digoxygenin-conjugated riboprobe to C3 was generated for in situ

hybridisation on cryosections of retinal tissue, as described in a

previous study conducted by our group [30]. Synthesis of the C3

riboprobe and In situ hybridisation were performed in accordance

with methodology described previously [36]; the C3 riboprobe was

hybridised overnight at 57uC, and then washed in saline sodium

citrate (pH 7.4) at 60uC. The bound probe was visualised with

NBT/BCIP (Nitro blue tetrazolium/5-Bromo-4-chloro-3-indolyl

Table 1. TaqmanH probes used.

Gene Symbol Gene Name Catalogue Entrez Gene ID

Actb Actin, beta Rn00667869_m1 NM_031144.2

C3 Complement component 3 Mm00437858_m1 NM_009778.2

Ccl2 Chemokine (C-C motif) ligand 2 Rn01456716_g1 NM_031530.1

Ccl3 Chemokine (C-C motif) ligand 3 Rn00564660_m1 NM_013025.2

Ccl4 Chemokine (C-C motif) ligand 4 Rn00587826_m1 NM_053858.1

Ccl7 Chemokine (C-C motif) ligand 7 Rn01467286_m1 NM_001007612.1

Cxcl10 Chemokine (C-X-C motif) ligand 10 Rn01413889_g1 NM_139089.1

Cxcl11 Chemokine (C-X-C motif) ligand 11 Rn00788262_g1 NM_182952.2

Gapdh Glyceraldehyde-3-phosphate dehydrogenase Rn99999916_s1 NM_017008.3

Gfap Glial fibrillary acidic protein Rn00566603_m1 NM_017009.2

doi:10.1371/journal.pone.0093343.t001
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phosphate), which was followed by a counterstain using standard

immunohistochemical labelling for either IBA1 or isolectin B4

(described further in ‘immunohistochemistry’) as required.

Immunohistochemistry
Cryosections from each treatment group were used for

immunohistochemical analysis, using an antibody against IBA1

(1:500, Cat# 019-19741; Wako, Osaka, Japan). Blood vessels were

visualised using an isolectin B4 stain, conjugated to FITC (1:100,

Cat# L2895; Sigma-Aldrich, St. Louis, MO). Immunohistochem-

istry was performed using methodology previously described [29].

Immunofluorescence was viewed using a Zeiss laser scanning

microscope, and acquired using PASCAL software (Zeiss, v4.0).

Images were enhanced for publication using Adobe Photoshop

software, which was standardised between images.

Quantification of C3-expressing Cells
Counts of C3-expressing cells were performed on retinal

cryosections stained for C3 using in situ hybridisation (as described

above); identification of these C3-expressing cells as monocytes/

microglia was confirmed in a previous investigation by our group

[30]. Counts of C3-expressing cells were carried out along the full-

length of retinal sections cut in the para-saggital plane (supero-

inferior) close to the vertical meridian, in adjacent fields measuring

1 mm across. The counts of C3-expressing cells were grouped

according to their localisation in either the retinal vasculature,

ONL, or choroidal vasculature. The total number of C3-

expressing cells from each retina is the average of 3 sections at

comparable locations.

Statistical Analysis
Statistical analysis was performed using the one-way ANOVA

with Tukey’s multiple comparison post-test, or the unpaired

Student’s t-test. For each analysis, differences with a P value,0.05

were considered statistically significant.

Results

Quantification of ONL Thickness and GFAP Expression
with Age
The average thickness of the ONL gradually reduced through-

out the aging timecourse (Figure 1A). ONL thickness decreased

significantly by P450, compared to animals aged P100 (P,0.05).

At P750, the ONL was significantly thinner than both P450 and

P100 age-groups (P,0.05). Additionally, there was regional

variation in the rate of ONL thinning, between superior and

inferior retina, as a function of age (Figure 1B). At P450 superior

retina shows a trend towards being thinner than inferior retina,

but the difference is not significant (P.0.05). However, in P750

animals, the superior portion of the retina was significantly thinner

than inferior retina (P,0.05).

We also detected modulation of the stress-marker GFAP over

the aging timecourse (Figure 1C). Expression of GFAP increased

significantly to 276% by P750 compared to P100 (P,0.05).

Although the expression of GFAP at P450 also showed a tentative

increase compared to P100, this proved to be highly inconsistent,

and was not significant in relation to either P100 or P750 age

groups.

Differential Expression and Localisation of C3 in the
Retina
Using qPCR, the differential expression of C3 in the retina was

assessed over the age timecourse (Figure 2). The expression of C3

did not change appreciably between animals aged P100, and those

aged P450 (8.3%, P.0.05). At P750 however, the expression of C3

was significantly increased, reaching a differential expression of

264.3%, relative to animals aged P100 (P,0.05).

Figure 1. Quantification of ONL thickness and GFAP expression
with respect to age. A: The thickness of the ONL decreased
progressively throughout the aging time course, and was markedly
reduced by P750 (P,0.05). B: Regional variation in ONL thickness was
not observed at P100 and P450 age-groups across the vertical meridian
(P.0.05). At P750, the greater thinning was observed in the superior
retina than the inferior (,0.05). C: The expression of GFAP was found to
increase at P450, however this was not significant compared to P100
(P.0.05). At P750 a 276% increase was observed in the expression of
GFAP, compared to P100 (P,0.05). P100 n= 3, P450 n= 3, P750 n= 3;
error bars represent SEM. ‘*’ denotes a significant change using ANOVA
with Tukey’s post-test where P,0.05, ‘**’ denotes P,0.01.
doi:10.1371/journal.pone.0093343.g001
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Localisation of C3 expression in the retina was assessed with in

situ hybridisation over the aging timecourse (Figures 3, 4 and 5). In

situ hybridisation was preferred over immunohistochemistry for

this purpose, since the propensity of C3 protein to be deposited on

activating surfaces may lead to false-positive observations. C3

mRNA was expressed in the aging retina by cells immunoreactive

for the monocyte/microglia marker IBA1 (Figure 5A–I), consistent

with our previous findings in a light-induced model of retinal

degeneration [30]. Staining for C3 mRNA was evident within the

cytoplasm of cells, which was often clustered in small process-like

ramifications (Figure 5A–C, G–I; Arrows). Few C3-expressing cells

were detected at P100, close to zero per retina (Figure 3,

histogram); this was not significantly changed at P450 (0.6 per

retina, P.0.05). However, by P750 the number of C3-expressing

cells had significantly increased to 11.6 per retina, P,0.05

(Figure 3A–H, and histogram). The distribution of C3-expressing

cells in superior and inferior retina is shown in Figure 4, histogram

A. In P100 and P450 animals C3-expressing cells were evenly

distributed across superior and inferior retina. At P750 however,

C3-expressing cells were far more numerous in the superior

portion of the retina than the inferior (9.7 and 2.1 respectively, P,

0.05).

The increased numbers of C3-expressing cells were mainly

associated with the retinal vasculature (P,0.05) (Figure 4,

histogram B), although there was also a modest increase in C3-

expressing cells the ONL and subretinal space (P,0.05, Figure 4,

histogram B). In general, C3-expressing cells were not observed in

the choroid; rather, C3-expressing cells were mainly located in-

and-around the retinal blood vessels at P750, in a pattern

consistent with vascular cuffing (Figure 3A–C, D–E, F–G). C3-

expressing cells were also detected at P750 in the optic nerve

(Figure 6A, D–E) and at the optic nerve head (Figure 6B–C), in the

ciliary body in association with the pars plicata (Figure 6G) and at

the border of the pars plana and retina (Figure 6H, I–J).

Expression of Ccl- and Cxcl- Chemokines in the Retina
In general, expression of Ccl2, Ccl3, Ccl4, Ccl7 (Figure 7A),

and Cxcl10, Cxcl11 (Figure 7B) did not change significantly in

P450 animals, compared those aged P100 (P.0.05), with the

exception of Cxcl11 (43.7%, P,0.05). While there was some

evidence of an increase in Ccl2 expression at P450 (134.9%), it was

variable between animals and not statistically significant (P.0.05).

By P750 however, significant increases expression of all Ccl- and

Cxcl- chemokines examined was detected compared to P100 (P.

0.05), the most highly upregulated being Ccl2 (195.6%) and

Cxcl10 (665.0%).

Discussion

The current study contributes to an understanding of comple-

ment activation in normal aging of the retina through several key

aspects. Primarily, we show using in situ hybridisation, that IBA1-

positive microglia/monocytes are a source of C3 mRNA in the

aging retina, and are found associated primarily with the retinal

vasculature as well as in the ONL at P750. We also find IBA1-

positive C3-expressing cells beyond the retinal margins within the

ciliary body, and in the optic nerve head in the aged retinas. In

addition, we show that increased numbers of C3-expressing cells

coincide spatiotemporally with increased expression of chemokines

(Ccl- and Cxcl-), up-regulation of GFAP, and follow the initial

thinning of the ONL. However, the role of C3-expressing

monocytes/microglia in relation to these features of the aging

process remains unclear.

Figure 2. Expression of C3 in the neural retina by qPCR over the aging timecourse. No appreciable difference was observed in the
expression of C3 between P100 and P450 age groups (P.0.05). By P750 there was a robust 264.3% increase in the expression of C3, compared to
P100 and P450 (P,0.05). P100 n= 3, P450 n= 3, P750 n= 3; error bars represent SEM. ‘*’ denotes a significant change using ANOVA with Tukey’s post-
test where P,0.05.
doi:10.1371/journal.pone.0093343.g002
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Complement Activity and Normal Aging of the Retina
Several investigations have previously described increased

expression of complement components mRNAs – including C3–

in the retinas of mice aged 20–24 months, compared to those aged

3 months [28,37]. In this study we show, for the first time, that a

source of C3 mRNA in the aging retina is from increased numbers

of IBA1-immunoreactive microglia/monocytes located in the

retinal vasculature and in the ONL. We find that these cells

accumulate preferentially in superior retina at P750 at the site of

maximal thinning of the ONL, and in spatiotemporal correlation

with the location of the area centralis of the rat retina (see [31,38]) –

a homologue of the human macula. Similarly, age-related thinning

of the ONL, and up-regulation of GFAP have been characterised

in several human studies [39,40,41]. These findings from the

normally aging rat retina are also consistent with our previous

findings from younger rats of the same strain using a retinal light-

Figure 3. In situ hybridisation for C3 mRNA in the retina with respect to age. A–F: Representative images show In situ hybridisation for C3
mRNA (purple) and vessels (lectin staining, green) in the retina. In retinas from P750, expression of C3 was apparent in cells (A, C, E, arrows) closely
associated with vessels from the retinal vasculature stained with lectin (B, D, E). H: Staining for C3 was also occasionally observed among cells
situated in the ONL (arrow). Histogram: Quantification of C3-expressing cells per retina showed no significant change at P450 compared to P100
(0.6 per retina, P.0.05). At P750, C3-expressing cells increased significantly (P,0.05) to 11.6 per retina compared to both P100 and P450 groups.
P100 n= 3, P450 n= 3, P750 n= 3; error bars represent SEM. ‘*’ denotes a significant change using ANOVA with Tukey’s post-test where P,0.05, ‘**’
denotes P,0.01. V, retinal blood vessel; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; ONL, outer nuclear layer; OS, outer
segments.
doi:10.1371/journal.pone.0093343.g003
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damage model, in which C3-expressing monocytes appear in the

superior retina at the locus of damage [30]. It should be noted

however that the number of animals in the current study was

relatively small, which is primarily attributed to the difficulties in

rearing a large cohort to an advanced age such as P750.

Nevertheless, the data are sufficiently robust and significant, and

are in agreement with previous findings [28].

C3 is a key complement component that drives activation of all

three pathways (reviewed in [15]). While activation of complement

has beneficial properties including promoting the clearance of

debris [14,42,43,44], immune complexes [15,45,46,47], and

apoptotic cells [48,49,50,51], it may also exacerbate degeneration

if activated in an inappropriate manner. Such activation is

implicated in various neurodegenerative disorders, as well as

ischemia- and trauma-related injuries (reviewed in [44,52,53]). In

the retina, recent experimental evidence indicates that copious

synthesis of C3 is detrimental, in that a C3-expressing adenovirus

transfected into mice retinas promotes degeneration of RPE and

photoreceptors [54]. Such degeneration may be accelerated by the

ablation of CFH, which spurs increased deposition of C3 in the

outer retina of aged mice, as well as reduced retinal function [55].

Whether the accumulation of C3-expressing cells, as observed

here, are a causative factor in the age-related thinning of the ONL,

or a stress-related consequence of this phenomenon, is unclear.

Nevertheless, increased synthesis of C3 by an accumulation of

microglia/monocytes with age is likely to contribute to a

propensity for increased complement activity in the retinal

environment.

Origins of C3-expressing Cells in the Aging Retina
The origin of the C3-expressing microglia/monocytes, and the

avenue of their accumulation in the retina, remains uncertain. In

this study we observe C3-expressing cells in and around the retinal

vasculature, and at the both the ciliary margin and in the optic

nerve. In particular, this distribution is consistent with recruitment

of non-intrinsic, bone-marrow (BM)-derived monocytes into the

retina, in findings garnered from several studies. Chimeric mice

stressed by either N-methyl-N-nitrosourea (MNU) injection, retinal

detachment, or light damage, have observed that BM-derived cells

migrate into the retina along the retinal vasculature via the ciliary

margin and optic disc, and are recruited to the ONL and

subretinal space at the locus of damage [56,57]. This distribution is

also consistent with our understanding of the development of

microglial populations in the retina [58]. Taken together, the

striking similarity of these findings do suggest that at least some C3-

expressing cells may be recruited BM-derived cells. However, we

cannot discount the possibility that the C3-expressing cells include

resident microglia, in which C3-expression has been induced by a

parainflammatory environment. Further studies are needed to

confirm these observations, using chimeras, parabiosis, or methods

of monocyte depletion.

It is possible that escalation of complement activation in the

aging retina, as indicated by increased C3 expression in the

current study, is driven by aberrant para-inflammatory processes

stimulated by the aging retinal environment (reviewed in [26]).

Oxidative stress is a commonly accepted consequence of aging,

and increases in markers such as oxidative low density lipoprotein

and dinitrophenylated proteins have been observed in the retinas

of aged mice [26]. Moreover, several investigations have

demonstrated that complement activation may be stimulated by

oxidative by-products. Mice immunized with the oxidative

damage by-product CEP develop retinal degeneration and show

increased deposition of complement C3 in the outer retina

[59,60]. Studies have also shown that RPE cultures exposed to

photo-oxidative stress or oxidized photoreceptor outer segments

have reduced expression of the complement regulatory gene CFH

[61,62]. Activation and deposition of complement may also be

stimulated in microglia by increases in age-related deposits such as

lipofuscin (reviewed in [63]). Recent evidence in vitro suggests that

accumulation of lipofuscin/A2E in microglial cells promotes

activation of complement, by simultaneously reducing synthesis

of the complement inhibitor CFH while increasing expression of

CFB [64].

Increases in C3-expressing monocytes/microglia in the aging

retina are also likely to be stimulated by the increased expression

of chemokines in the aging retina. Our data show that expression

of both Ccl- and Cxcl- chemokines is up-regulated by P750, and is

correlated with increases in C3-expressing cells. Previous micro-

array analysis of aged retinas have also reported increased

expression of the chemokines Ccl2, Ccl3, and Ccl12 in 20

Figure 4. Distribution of In situ hybridisation for C3 mRNA in
the over the aging timecourse. A: C3-expressing cells were evenly
distributed across superior and inferior retina P100 and P450 animals
(P.0.05). At P750, C3-expressing cells were more numerous in the
superior portion of the retina than the inferior (9.7 and 2.1 respectively,
P,0.05). B: Increases in C3-expressing cells were predominately
associated with the retinal vasculature at P750 (P,0.05), with more
modest increases apparent in the ONL and subretinal space over the
same period (P,0.05). P100 n= 3, P450 n= 3, P750 n= 3; error bars
represent SEM. ‘*’ denotes a significant change using ANOVA with
Tukey’s post-test where P,0.05, ‘**’ denotes P,0.01.
doi:10.1371/journal.pone.0093343.g004
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Figure 5. Co-immunolabeling of C3-expressing cells (purple) for IBA1 (green) at P750. A–I: Representative images at P750 show In situ
hybridisation for C3 mRNA, IBA1 immunoreactivity, and lectin staining (red) for retinal vasculature in the retina. C3 staining (A, D, arrows) was found
to correlate strongly with IBA1-immunoreactive microglia/monocytes (B, E, arrows), which were in close association with both superficial and deep
retinal vasculature (C, F, arrows). C3-expressing cells in the ONL (G, arrow) also showed specificity for IBA1-immunreactive microglia at the ONL/OS
margin (H,I, arrows). V, retinal blood vessel; INL, inner nuclear layer; GCL, ganglion cell layer; ONL, outer nuclear layer; OS, outer segments.
doi:10.1371/journal.pone.0093343.g005

Figure 6. In situ hybridisation for C3-expressing cells in the optic nerve and ciliary body. Representative images demonstrate In situ
hybridisation for C3 mRNA (purple) and IBA1-immunoreactive microglia/monocytes (green) at the optic nerve (A-F) and ciliary body (G-J), at P750. A–
F: An abundance of C3-expressing cells were evident in section of the optic nerve tissue (A, arrows), and were immunoreactive for IBA1 (D–F). C3-
expressing cells were also occasionally found emerging from the optic nerve head (B–C, arrow). G–J: At P750, C3-expressing cells were observed
within the ciliary body, including the pars plicata (G, arrows) and the pars plana, particularly at the retinal margin (H, arrow). These cells were also
immunoreactive for IBA1 (I–J). CB, ciliary body; V, retinal blood vessel; INL, inner nuclear layer; IPL, inner plexiform layer; ONL, outer nuclear layer.
doi:10.1371/journal.pone.0093343.g006
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month-old mice compared to those aged 3-months [28]. We have

recently shown that in the light-induced model of retinal

degeneration, suppression of Ccl2 expression with a targeted

small-interfering RNA (siRNA) inhibits recruitment of IBA1-

positive monocytes/microglia, and reduces photoreceptor death in

the retina [32]. Moreover, ablation of Ccl2 impairs the

recruitment of BM-derived microglia/monocytes in retinas of in

chimeric mice, where subclinical damage and parainflammation

are induced by c-ray irradiation [65].

Relevance to Human Aging and AMD
Advancing age is the most consistent risk factors for AMD

(reviewed in [66]). The findings of current study, and others [26],

suggest that advancing age and para-inflammation predisposes the

retina towards a pro-inflammatory and pro-complement environ-

ment, which in turn contributes to the pathogenesis of AMD. The

cellular events leading to propagation of complement in the retina

are not well understood (reviewed in [12,67]) although it is well

established that polymorphisms in a range of complement-related

Figure 7. Expression of Ccl- (A) and Cxcl- (B) chemokines in the neural retina by qPCR over the aging timecourse. A: The expression of
Ccl2, Ccl3, Ccl4, Ccl7 did not change appreciably in animals aged P450 (P.0.05), while a significant up-regulation was observed in P750 animals for all
Ccl- genes (P,0.05), compared to P100; a large increase in Ccl2 expression was observed at P450, although this was not significant (P.0.05). B: At
P450, there was a small increase in expression of Cxcl11 (P,0.05), but not Cxdc10 (P.0.05). By P750 there was a considerable increase in the
expression of both Cxcl- genes compared to P100, particularly Cxcl10 (P,0.05). P100 n= 4, P450 n= 4, P750 n= 4; error bars represent SEM. ‘*’
denotes a significant change using ANOVA with Tukey’s post-test where P,0.05, ‘**’ denotes P,0.01.
doi:10.1371/journal.pone.0093343.g007
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genes are associated with risk of AMD (reviewed in [12]).

Moreover, recent findings from a large-scale gene expression

study show that human donor eyes with any form of AMD have

increased levels of expression of complement genes, including C3

[68]. The present findings from aging rat retina are consistent with

those analyses [62], in that both show increases in C3 expression in

the neural retina, while the current investigation further identifies

monocytes/microglia as a source of this expression in the aging

retina.

It is well established that recruitment of microglia/monocytes to

the macula is strongly associated with all forms of AMD pathology

[10,11,69,70,71,72], and studies in experimental neovascular ‘wet’

AMD show that inhibition of monocyte recruitment reduces in the

size of the neovascular lesion, compared to controls [73,74].

Recent studies utilising AMD donor tissue have demonstrated that

monocyte-recruiting chemokines, including Ccl2 and Cxcl10, are

up-regulated in all forms of the disease [68]. Moreover, evidence

from Sennlaub and colleagues indicates that elevated levels of Ccl2

in atrophic AMD lesions are accompanied by an influx of Ccr2+

monocytes [75]. This association is further confirmed in animal

models, where suppression of Ccl2 reduces the extent of cell death

in both experimental neovascularisation [76] and light-induced

degeneration [32,75]. Our current findings, in conjunctions with

others [28], also show similar up-regulation of Ccl- and Cxcl-

chemokines during normal retinal aging.

Conclusion
Our findings suggest that the expression of C3 increases in the

aging rat retina, due to the local synthesis of C3 by monocytes/

microglia, and further implicate complement in the progression of

retinal degeneration. While low levels of complement activation in

the retina may be beneficial to the maintenance of retinal

homeostasis, in circumstances of chronic para-inflammation it

seems that over-activation may contribute to chronic stress and

degeneration. This interpretation is consistent with findings

showing that polymorphism in the C3 regulator CFH is associated

with increased risk of AMD. Synthesis of C3 by microglia/

macrophages and their increasing presence in the degenerating

retina implicates them in complement activation in retinal aging.

Consequently, modulation of microglial activation may be useful

strategy to control detrimental propagation of complement in the

aging retina, and in turn retinal degenerations such as AMD.
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