414 research outputs found

    Muscular effort increases hand-blink reflex magnitude.

    Get PDF
    Defensive motor responses elicited by sudden environmental stimuli are finely modulated by their behavioural relevance to maximise the organism's survival. One such response, the blink reflex evoked by intense electrical stimulation of the median nerve (Hand-Blink Reflex; HBR), has been extensively used to derive fine-grained maps of defensive peripersonal space. However, as other subcortical reflexes, the HBR might also be modulated by lower-level factors that do not bear direct relevance to the defensive value of blinking, thus posing methodological and interpretive problems. Here, we tested whether HBR magnitude is affected by the muscular effort present when holding the hand in certain postures. We found that HBR magnitude increases with muscular effort, an effect most likely mediated by the increased corticospinal drive. However, we found strong evidence that this effect is substantially smaller than the well-known effect of eye-hand proximity on HBR magnitude. Nonetheless, care should be taken in future experiments to avoid erroneous interpretations of the effects of muscular effort as indicators of behaviour relevance

    The blink reflex magnitude is continuously adjusted according to both current and predicted stimulus position with respect to the face

    Get PDF
    Published online 22 April 2016The magnitude of the hand-blink reflex (HBR), a subcortical defensive reflex elicited by the electrical stimulation of the median nerve, is increased when the stimulated hand is close to the face ('far-near effect'). This enhancement occurs through a cortico-bulbar facilitation of the polysynaptic medullary pathways subserving the reflex. Here, in two experiments, we investigated the temporal characteristics of this facilitation, and its adjustment during voluntary movement of the stimulated hand. Given that individuals navigate in a fast changing environment, one would expect the cortico-bulbar modulation of this response to adjust rapidly, and as a function of the predicted spatial position of external threats. We observed two main results. First, the HBR modulation occurs without a temporal delay between when the hand has reached the stimulation position and when the stimulus happens (Experiments 1 and 2). Second, the voluntary movement of the hand interacts with the 'far-near effect': stimuli delivered when the hand is far from the face elicit an enhanced HBR if the hand is being moved towards the face, whereas stimuli delivered when the hand is near the face elicit an enhanced HBR regardless of the direction of the hand movement (Experiment 2). These results indicate that the top-down modulation of this subcortical defensive reflex occurs continuously, and takes into account both the current and the predicted position of potential threats with respect to the body. The continuous control of the excitability of subcortical reflex circuits ensures appropriate adjustment of defensive responses in a rapidly-changing sensory environment.Sarah B. Wallwork, Kerwin Talbot, Danny Camfferman, G.L. Moseley and G.D. Iannett

    Long term outcome in children affected by absence epilepsy with onset before the age of three years.

    Get PDF
    OBJECTIVE: The goal of this study was to define the long-term outcome of absence epilepsy presenting before the age of 3 years. METHODS: We retrospectively studied the medical records of 40 children from eight neuropediatric centers in Italy with respect to the personal and family histories of epilepsy or febrile seizures, time of follow-up, cognitive functions, treatment, and outcome. RESULTS: Forty patients were enrolled in this study. They all fulfilled the criteria for absence epilepsy with 3-Hz spike-wave complexes on the EEG, normal neurological examination, and no other seizures types. Seizure onset occurred between 24.1 and 36.0 months. There was a family history of epilepsy in 28%, and of febrile seizures in 13%. Thirty-three patients were treated with valproic acid (VPA), mostly used in monotherapy (26 patients) or in association with ethosuximide. At final follow-up, 33 patients were seizure free and 29 had normal EEGs. Thirty-four patients had a normal intelligence quotient (IQ), whereas 6 had a decreased IQ, mainly associated with poor control of seizures. CONCLUSION: In our series, absence seizures presenting before the age of 3 appeared to have quite a good long-term clinical prognosis; the neuropsychological outcome was comparable to that of childhood epilepsy presenting after 3 years of age

    NASA Numerical and Experimental Evaluation of UTRC Low Emissions Injector

    Get PDF
    Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: 1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and 2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots are shown in comparison with experimental data (where this data is available) for flow velocities, fuel, and temperature distribution. The CFD results are consistent with experimental observations for fuel distribution and vaporization. Analysis of gas sample results, using a previously-developed NASA NOx correlation, indicates that for sea-level takeoff, the PICS configuration is predicted to deliver an EINOx value of about 3 for the targeted supersonic aircraft. Emissions results at supersonic cruise conditions show potential for meeting the NASA goals with liquid fuel

    A central mechanism of analgesia in mice and humans lacking the sodium channel NaV1.7

    Get PDF
    Deletion of SCN9A encoding the voltage-gated sodium channel NaV1.7 in humans leads to profound pain insensitivity and anosmia. Conditional deletion of NaV1.7 in sensory neurons of mice also abolishes pain, suggesting that the locus of analgesia is the nociceptor. Here we demonstrate, using in vivo calcium imaging and extracellular recording, that NaV1.7 knockout mice have essentially normal nociceptor activity. However, synaptic transmission from nociceptor central terminals in the spinal cord is greatly reduced by an opioid-dependent mechanism. Analgesia is also reversed substantially by central but not peripheral application of opioid antagonists. In contrast, the lack of neurotransmitter release from olfactory sensory neurons is opioid independent. Male and female humans with NaV1.7-null mutations show naloxone-reversible analgesia. Thus, inhibition of neurotransmitter release is the principal mechanism of anosmia and analgesia in mouse and human Nav1.7-null mutants

    SK channel-mediated metabolic escape to glycolysis inhibits ferroptosis and supports stress resistance in C. elegans

    Get PDF
    Metabolic flexibility is an essential characteristic of eukaryotic cells in order to adapt to physiological and environmental changes. Especially in mammalian cells, the metabolic switch from mitochondrial respiration to aerobic glycolysis provides flexibility to sustain cellular energy in pathophysiological conditions. For example, attenuation of mitochondrial respiration and/or metabolic shifts to glycolysis result in a metabolic rewiring that provide beneficial effects in neurodegenerative processes. Ferroptosis, a non-apoptotic form of cell death triggered by an impaired redox balance is gaining attention in the field of neurodegeneration. We showed recently that activation of small-conductance calcium-activated K+ (SK) channels modulated mitochondrial respiration and protected neuronal cells from oxidative death. Here, we investigated whether SK channel activation with CyPPA induces a glycolytic shift thereby increasing resilience of neuronal cells against ferroptosis, induced by erastin in vitro and in the nematode C. elegans exposed to mitochondrial poisons in vivo. High-resolution respirometry and extracellular flux analysis revealed that CyPPA, a positive modulator of SK channels, slightly reduced mitochondrial complex I activity, while increasing glycolysis and lactate production. Concomitantly, CyPPA rescued the neuronal cells from ferroptosis, while scavenging mitochondrial ROS and inhibiting glycolysis reduced its protection. Furthermore, SK channel activation increased survival of C. elegans challenged with mitochondrial toxins. Our findings shed light on metabolic mechanisms promoted through SK channel activation through mitohormesis, which enhances neuronal resilience against ferroptosis in vitro and promotes longevity in vivo

    Contact heat evoked potentials using simultaneous EEG and fMRI and their correlation with evoked pain

    Get PDF
    BACKGROUND: The Contact Heat Evoked Potential Stimulator (CHEPS) utilises rapidly delivered heat pulses with adjustable peak temperatures to stimulate the differential warm/heat thresholds of receptors expressed by Adelta and C fibres. The resulting evoked potentials can be recorded and measured, providing a useful clinical tool for the study of thermal and nociceptive pathways. Concurrent recording of contact heat evoked potentials using electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) has not previously been reported with CHEPS. Developing simultaneous EEG and fMRI with CHEPS is highly desirable, as it provides an opportunity to exploit the high temporal resolution of EEG and the high spatial resolution of fMRI to study the reaction of the human brain to thermal and nociceptive stimuli. METHODS: In this study we have recorded evoked potentials stimulated by 51° C contact heat pulses from CHEPS using EEG, under normal conditions (baseline), and during continuous and simultaneous acquisition of fMRI images in ten healthy volunteers, during two sessions. The pain evoked by CHEPS was recorded on a Visual Analogue Scale (VAS). RESULTS: Analysis of EEG data revealed that the latencies and amplitudes of evoked potentials recorded during continuous fMRI did not differ significantly from baseline recordings. fMRI results were consistent with previous thermal pain studies, and showed Blood Oxygen Level Dependent (BOLD) changes in the insula, post-central gyrus, supplementary motor area (SMA), middle cingulate cortex and pre-central gyrus. There was a significant positive correlation between the evoked potential amplitude (EEG) and the psychophysical perception of pain on the VAS. CONCLUSION: The results of this study demonstrate the feasibility of recording contact heat evoked potentials with EEG during continuous and simultaneous fMRI. The combined use of the two methods can lead to identification of distinct patterns of brain activity indicative of pain and pro-nociceptive sensitisation in healthy subjects and chronic pain patients. Further studies are required for the technique to progress as a useful tool in clinical trials of novel analgesics

    Parametric Modeling Investigation of a Radially-Staged Low-Emission Aviation Combustor

    Get PDF
    Aviation gas-turbine combustion demands high efficiency, wide operability and minimal trace gas emissions. Performance critical design parameters include injector geometry, combustor layout, fuel-air mixing and engine cycle conditions. The present investigation explores these factors and their impact on a radially staged low-emission aviation combustor sized for a next-generation 24,000-lbf-thrust engine. By coupling multi-fidelity computational tools, a design exploration was performed using a parameterized annular combustor sector at projected 100% takeoff power conditions. Design objectives included nitrogen oxide emission indices and overall combustor pressure loss. From the design space, an optimal configuration was selected and simulated at 7.1, 30 and 85% part-power operation, corresponding to landing-takeoff cycle idle, approach and climb segments. All results were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Species concentrations were solved directly using a reduced 19-step reaction mechanism for Jet-A. Turbulence closure was obtained using a nonlinear K-epsilon model. This research demonstrates revolutionary combustor design exploration enabled by multi-fidelity physics-based simulation

    Thoughts of Death Modulate Psychophysical and Cortical Responses to Threatening Stimuli

    Get PDF
    Existential social psychology studies show that awareness of one's eventual death profoundly influences human cognition and behaviour by inducing defensive reactions against end-of-life related anxiety. Much less is known about the impact of reminders of mortality on brain activity. Therefore we explored whether reminders of mortality influence subjective ratings of intensity and threat of auditory and painful thermal stimuli and the associated electroencephalographic activity. Moreover, we explored whether personality and demographics modulate psychophysical and neural changes related to mortality salience (MS). Following MS induction, a specific increase in ratings of intensity and threat was found for both nociceptive and auditory stimuli. While MS did not have any specific effect on nociceptive and auditory evoked potentials, larger amplitude of theta oscillatory activity related to thermal nociceptive activity was found after thoughts of death were induced. MS thus exerted a top-down modulation on theta electroencephalographic oscillatory amplitude, specifically for brain activity triggered by painful thermal stimuli. This effect was higher in participants reporting higher threat perception, suggesting that inducing a death-related mind-set may have an influence on body-defence related somatosensory representations
    • …
    corecore