291 research outputs found

    The soil and plant biogeochemistry sampling design for The National Ecological Observatory Network

    Get PDF
    Human impacts on biogeochemical cycles are evident around the world, from changes to forest structure and function due to atmospheric deposition, to eutrophication of surface waters from agricultural effluent, and increasing concentrations of carbon dioxide (CO2) in the atmosphere. The National Ecological Observatory Network (NEON) will contribute to understanding human effects on biogeochemical cycles from local to continental scales. The broad NEON biogeochemistry measurement design focuses on measuring atmospheric deposition of reactive mineral compounds and CO2 fluxes, ecosystem carbon (C) and nutrient stocks, and surface water chemistry across 20 eco‐climatic domains within the United States for 30 yr. Herein, we present the rationale and plan for the ground‐based measurements of C and nutrients in soils and plants based on overarching or “high‐level” requirements agreed upon by the National Science Foundation and NEON. The resulting design incorporates early recommendations by expert review teams, as well as recent input from the larger natural sciences community that went into the formation and interpretation of the requirements, respectively. NEON\u27s efforts will focus on a suite of data streams that will enable end‐users to study and predict changes to biogeochemical cycling and transfers within and across air, land, and water systems at regional to continental scales. At each NEON site, there will be an initial, one‐time effort to survey soil properties to 1 m (including soil texture, bulk density, pH, baseline chemistry) and vegetation community structure and diversity. A sampling program will follow, focused on capturing long‐term trends in soil C, nitrogen (N), and sulfur stocks, isotopic composition (of C and N), soil N transformation rates, phosphorus pools, and plant tissue chemistry and isotopic composition (of C and N). To this end, NEON will conduct extensive measurements of soils and plants within stratified random plots distributed across each site. The resulting data will be a new resource for members of the scientific community interested in addressing questions about long‐term changes in continental‐scale biogeochemical cycles, and is predicted to inspire further process‐based research

    Intentional versus unintentional nitrogen use in the United States : trends, efficiency and implications

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeochemistry 114 (2013): 11-23, doi:10.1007/s10533-012-9801-5.Human actions have both intentionally and unintentionally altered the global economy of nitrogen (N), with both positive and negative consequences for human health and welfare, the environment and climate change. Here we examine long-term trends in reactive N (Nr) creation and efficiencies of Nr use within the continental US. We estimate that human actions in the US have increased Nr inputs by at least ~5 times compared to pre-industrial conditions. Whereas N2 fixation as a by-product of fossil fuel combustion accounted for ~1/4 of Nr inputs from the 1970s to 2000 (or ~7 Tg N year−1), this value has dropped substantially since then (to <5 Tg N year−1), owing to Clean Air Act amendments. As of 2007, national N use efficiency (NUE) of all combined N inputs was equal to ~40 %. This value increases to 55 % when considering intentional N inputs alone, with food, industrial goods, fuel and fiber production accounting for the largest Nr sinks, respectively. We estimate that 66 % of the N lost during the production of goods and services enters the air (as NO x , NH3, N2O and N2), with the remaining 34 % lost to various waterways. These Nr losses contribute to smog formation, acid rain, eutrophication, biodiversity declines and climate change. Hence we argue that an improved national NUE would: (i) benefit the US economy on the production side; (ii) reduce social damage costs; and (iii) help avoid some major climate change risks in the future.This work resulted from a workshop supported by NSF Research Coordination Network Awards DEB-0443439 and DEB-1049744 and by the David and Lucille Packard Foundation

    PEPtalk2: results of a pilot randomised controlled trial to compare VZIG and aciclovir as postexposure prophylaxis (PEP) against chickenpox in children with cancer.

    Get PDF
    OBJECTIVE: To determine the likely rate of patient randomisation and to facilitate sample size calculation for a full-scale phase III trial of varicella zoster immunoglobulin (VZIG) and aciclovir as postexposure prophylaxis against chickenpox in children with cancer. DESIGN: Multicentre pilot randomised controlled trial of VZIG and oral aciclovir. SETTING: England, UK. PATIENTS: Children under 16 years of age with a diagnosis of cancer: currently or within 6 months of receiving cancer treatment and with negative varicella zoster virus (VZV) serostatus at diagnosis or within the last 3 months. INTERVENTIONS: Study participants who have a significant VZV exposure were randomised to receive PEP in the form of VZIG or aciclovir after the exposure. MAIN OUTCOME MEASURES: Number of patients registered and randomised within 12 months of the trial opening to recruitment and incidence of breakthrough varicella. RESULTS: The study opened in six sites over a 13-month period. 482 patients were screened for eligibility, 32 patients were registered and 3 patients were randomised following VZV exposure. All three were randomised to receive aciclovir and there were no cases of breakthrough varicella. CONCLUSIONS: Given the limited recruitment to the PEPtalk2 pilot, it is unlikely that the necessary sample size would be achievable using this strategy in a full-scale trial. The study identified factors that could be used to modify the design of a definitive trial but other options for defining the best means to protect such children against VZV should be explored. TRIAL REGISTRATION NUMBER: ISRCTN48257441, EudraCT number: 2013-001332-22, sponsor: University of Birmingham

    Omni-conducting and omni-insulating molecules

    Get PDF
    The source and sink potential model is used to predict the existence of omni-conductors (and omni-insulators): molecular conjugated π systems that respectively support ballistic conduction or show insulation at the Fermi level, irrespective of the centres chosen as connections. Distinct, ipso, and strong omni-conductors/omni-insulators show Fermi-level conduction/insulation for all distinct pairs of connections, for all connections via a single centre, and for both, respectively. The class of conduction behaviour depends critically on the number of non-bonding orbitals (NBO) of the molecular system (corresponding to the nullity of the graph). Distinct omni-conductors have at most one NBO; distinct omni-insulators have at least two NBO; strong omni-insulators do not exist for any number of NBO. Distinct omni-conductors with a single NBO are all also strong and correspond exactly to the class of graphs known as nut graphs. Families of conjugated hydrocarbons corresponding to chemical graphs with predicted omni-conducting/insulating behaviour are identified. For example, most fullerenes are predicted to be strong omni-conductors

    Post transition metal substituted Keggin-type POMs as thin film chemiresistive sensors for H2O and CO2 detection

    Get PDF
    Chemiresitive sensing allows the affordable and facile detection of small molecules such as H2O and CO2. Herein, we report a novel class of Earth-abundant post transition metal substituted Keggin polyoxometalates (POMs) for chemiresistive sensing applications, with conductivities up to 0.01 S cm−1 under 100% CO2 and 65% Relative Humidity (RH)

    Prevalence of Disorders Recorded in Dogs Attending Primary-Care Veterinary Practices in England

    Get PDF
    Purebred dog health is thought to be compromised by an increasing occurence of inherited diseases but inadequate prevalence data on common disorders have hampered efforts to prioritise health reforms. Analysis of primary veterinary practice clinical data has been proposed for reliable estimation of disorder prevalence in dogs. Electronic patient record (EPR) data were collected on 148,741 dogs attending 93 clinics across central and south-eastern England. Analysis in detail of a random sample of EPRs relating to 3,884 dogs from 89 clinics identified the most frequently recorded disorders as otitis externa (prevalence 10.2%, 95% CI: 9.1-11.3), periodontal disease (9.3%, 95% CI: 8.3-10.3) and anal sac impaction (7.1%, 95% CI: 6.1-8.1). Using syndromic classification, the most prevalent body location affected was the head-and-neck (32.8%, 95% CI: 30.7-34.9), the most prevalent organ system affected was the integument (36.3%, 95% CI: 33.9-38.6) and the most prevalent pathophysiologic process diagnosed was inflammation (32.1%, 95% CI: 29.8-34.3). Among the twenty most-frequently recorded disorders, purebred dogs had a significantly higher prevalence compared with crossbreds for three: otitis externa (P = 0.001), obesity (P = 0.006) and skin mass lesion (P = 0.033), and popular breeds differed significantly from each other in their prevalence for five: periodontal disease (P = 0.002), overgrown nails (P = 0.004), degenerative joint disease (P = 0.005), obesity (P = 0.001) and lipoma (P = 0.003). These results fill a crucial data gap in disorder prevalence information and assist with disorder prioritisation. The results suggest that, for maximal impact, breeding reforms should target commonly-diagnosed complex disorders that are amenable to genetic improvement and should place special focus on at-risk breeds. Future studies evaluating disorder severity and duration will augment the usefulness of the disorder prevalence information reported herein

    Using indirect methods to constrain symbiotic nitrogen fixation rates : a case study from an Amazonian rain forest

    Get PDF
    © The Authors 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Biogeochemistry 99 (2010): 1-13, doi:10.1007/s10533-009-9392-y.Human activities have profoundly altered the global nitrogen (N) cycle. Increases in anthropogenic N have had multiple effects on the atmosphere, on terrestrial, freshwater and marine ecosystems, and even on human health. Unfortunately, methodological limitations challenge our ability to directly measure natural N inputs via biological N fixation (BNF)—the largest natural source of new N to ecosystems. This confounds efforts to quantify the extent of anthropogenic perturbation to the N cycle. To address this gap, we used a pair of indirect methods—analytical modeling and N balance—to generate independent estimates of BNF in a presumed hotspot of N fixation, a tropical rain forest site in central Rondônia in the Brazilian Amazon Basin. Our objectives were to attempt to constrain symbiotic N fixation rates in this site using indirect methods, and to assess strengths and weaknesses of this approach by looking for areas of convergence and disagreement between the estimates. This approach yielded two remarkably similar estimates of N fixation. However, when compared to a previously published bottom-up estimate, our analysis indicated much lower N inputs via symbiotic BNF in the Rondônia site than has been suggested for the tropics as a whole. This discrepancy may reflect errors associated with extrapolating bottom-up fluxes from plot-scale measures, those resulting from the indirect analyses, and/or the relatively low abundance of legumes at the Rondônia site. While indirect methods have some limitations, we suggest that until the technological challenges of directly measuring N fixation are overcome, integrated approaches that employ a combination of model-generated and empirically-derived data offer a promising way of constraining N inputs via BNF in natural ecosystems.We acknowledge and are grateful for financial support from the Andrew W. Mellon Foundation (C.C. and B.H.), the National Science Foundation (NSF DEB-0515744 to C.C. and A.T. and DEB-0315656 to C.N.), and the NASA LBA Program (NCC5-285 to C.N.)

    The role of high-dose myeloablative chemotherapy with haematopoietic stem cell transplantation (HSCT) in children with central nervous system (CNS) tumours:protocol for a systematic review and meta-analysis

    Get PDF
    OBJECTIVES: The objective of the study is to conduct a systematic review to compare the effects of high-dose chemotherapy (HDCT) with autologous haematopoietic stem cell transplantation (HSCT) versus standard-dose chemotherapy (SDCT) in children with malignant central nervous system (CNS) tumours. METHODS: Standard systematic review methods aimed at minimising bias will be employed for study identification, selection and data extraction. Ten electronic databases will be searched, along with citation searching and reference checking. Studies assessing the effects of HDCT with HSCT in children with CNS tumours will be included. The outcomes are survival (overall, progression-free, event-free, disease-free), response rates, short- and long-term adverse events and health-related quality of life (HRQoL). Two reviewers will independently screen and select randomised and non-randomised controlled trials and controlled and uncontrolled observational studies for inclusion. Quality assessment will be tailored to the different study designs. Where possible data will be summarised using combined estimates of effect for the hazard ratio for survival outcomes and the risk ratio for response rates. A fixed effect model will be used; sub-group analyses and meta-regression will be used to explore potential sources of heterogeneity between studies. DISCUSSION: Given the poor prognosis of malignant brain tumours in children in terms of survival and quality of life, this review will help guide clinical practice by summarising the current evidence on the use of high-dose myeloblative chemotherapy with stem cell support in children with CNS tumours

    Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient

    Get PDF
    The natural abundance of stable 15N isotopes in soils and plants is potentially a simple tool to assess ecosystem N dynamics. Several open questions remain, however, in particular regarding the mechanisms driving the variability of foliar δ15N values of non-N2 fixing plants within and across ecosystems. The goal of the work presented here was therefore to: (1) characterize the relationship between soil net mineralization and variability of foliar Δδ15N (δ15Nleaf − δ15Nsoil) values from 20 different plant species within and across 18 grassland sites; (2) to determine in situ if a plant’s preference for NO3− or NH4+ uptake explains variability in foliar Δδ15N among different plant species within an ecosystem; and (3) test if variability in foliar Δδ15N among species or functional group is consistent across 18 grassland sites. Δδ15N values of the 20 different plant species were positively related to soil net mineralization rates across the 18 sites. We found that within a site, foliar Δδ15N values increased with the species’ NO3− to NH4+ uptake ratios. Interestingly, the slope of this relationship differed in direction from previously published studies. Finally, the variability in foliar Δδ15N values among species was not consistent across 18 grassland sites but was significantly influenced by N mineralization rates and the abundance of a particular species in a site. Our findings improve the mechanistic understanding of the commonly observed variability in foliar Δδ15N among different plant species. In particular we were able to show that within a site, foliar δ15N values nicely reflect a plant’s N source but that the direction of the relationship between NO3− to NH4+ uptake and foliar Δδ15N values is not universal. Using a large set of data, our study highlights that foliar Δδ15N values are valuable tools to assess plant N uptake patterns and to characterize the soil N cycle across different ecosystems

    Tropical carbon sink accelerated by symbiotic dinitrogen fixation

    Get PDF
    A major uncertainty in the land carbon cycle is whether symbiotic nitrogen fixation acts to enhance the tropical forest carbon sink. Nitrogen-fixing trees can supply vital quantities of the growth-limiting nutrient nitrogen, but the extent to which the resulting carbon–nitrogen feedback safeguards ecosystem carbon sequestration remains unclear. We combine (i) field observations from 112 plots spanning 300 years of succession in Panamanian tropical forests, and (ii) a new model that resolves nitrogen and light competition at the scale of individual trees. Fixation doubled carbon accumulation in early succession and enhanced total carbon in mature forests by ~10% (~12MgC ha−1) through two mechanisms: (i) a direct fixation effect on tree growth, and (ii) an indirect effect on the successional sequence of non-fixing trees. We estimate that including nitrogen-fixing trees in Neotropical reforestation projects could safeguard the sequestration of 6.7 Gt CO2 over the next 20 years. Our results highlight the connection between functional diversity of plant communities and the critical ecosystem service of carbon sequestration for mitigating climate change
    corecore