301 research outputs found

    Nuclear Excitation by Electron Capture in Stellar Environments

    No full text
    In the resonant process of nuclear excitation by electron capture (NEEC), a free electron recombines into the atomic shell of an ion with the simultaneous excitation of the nucleus. This process is expected to be efficient in populating excited nuclear states in stellar plasmas of high electron density. In this work, we study the possible interplay of NEEC with nuclear excitation by neutron capture as well as associated gamma-decay and neutron emission in the context of nucleosynthesis. Neutron capture followed by beta-decay of the thus formed neutron-rich daughter isotopes constitutes the basic reaction leading to the synthesis of heavy isotopes. For the first time the impact of NEEC taking place prior to the decay of the high-energy state formed by neutron capture is investigated. We show that an additional nuclear excitation of the order of magnitude of 10 keV can cause substantial changes to the net decay rates of the excited nucleus making neutron re-emission predominant. As a consequence, the production of the daughter isotopes would be signi_cantly damped. This first estimate motivates further studies on the impact of NEEC on neutron capture nucleosynthesis

    Signatures of self-organized criticality in an ultracold atomic gas

    Get PDF
    Self-organized criticality is an elegant explanation of how complex structures emerge and persist throughout nature, and why such structures often exhibit similar scale-invariant properties. Although self-organized criticality is sometimes captured by simple models that feature a critical point as an attractor for the dynamics, the connection to real-world systems is exceptionally hard to test quantitatively. Here we observe three key signatures of self-organized criticality in the dynamics of a driven–dissipative gas of ultracold potassium atoms: self-organization to a stationary state that is largely independent of the initial conditions; scale-invariance of the final density characterized by a unique scaling function; and large fluctuations of the number of excited atoms (avalanches) obeying a characteristic power-law distribution. This work establishes a well-controlled platform for investigating self-organization phenomena and non-equilibrium criticality, with experimental access to the underlying microscopic details of the system

    RASSF1A–LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2

    Get PDF
    Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and therapeutic resistance. ​BRCA2 has a fundamental role in error-free DNA repair but also sustains genome integrity by promoting ​RAD51 nucleofilament formation at stalled replication forks. ​CDK2 phosphorylates ​BRCA2 (pS3291-​BRCA2) to limit stabilizing contacts with polymerized ​RAD51; however, how replication stress modulates ​CDK2 activity and whether loss of pS3291-​BRCA2 regulation results in genomic instability of tumours are not known. Here we demonstrate that the Hippo pathway kinase ​LATS1 interacts with ​CDK2 in response to genotoxic stress to constrain pS3291-​BRCA2 and support ​RAD51 nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also show that ​LATS1 forms part of an ​ATR-mediated response to replication stress that requires the tumour suppressor ​RASSF1A. Importantly, perturbation of the ​ATR–​RASSF1A–​LATS1 signalling axis leads to genomic defects associated with loss of ​BRCA2 function and contributes to genomic instability and ‘BRCA-ness’ in lung cancers

    DNA topoisomerases participate in fragility of the oncogene RET

    Get PDF
    Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication

    Evaluation of a standard provision versus an autonomy promotive exercise referral programme: rationale and study design

    Get PDF
    Background The National Institute of Clinical Excellence in the UK has recommended that the effectiveness of ongoing exercise referral schemes to promote physical activity should be examined in research trials. Recent empirical evidence in health care and physical activity promotion contexts provides a foundation for testing the utility of a Self Determination Theory (SDT) -based exercise referral consultation. Methods/Design Design: An exploratory cluster randomised controlled trial comparing standard provision exercise on prescription with a Self Determination Theory-based (SDT) exercise on prescription intervention. Participants: 347 people referred to the Birmingham Exercise on Prescription scheme between November 2007 and July 2008. The 13 exercise on prescription sites in Birmingham were randomised to current practice (n=7) or to the SDT-based intervention (n=6). Outcomes measured at 3 and 6-months: Minutes of moderate or vigorous physical activity per week assessed using the 7-day Physical Activity Recall; physical health: blood pressure and weight; health status measured using the Dartmouth CO-OP charts; anxiety and depression measured by the Hospital Anxiety and Depression Scale and vitality measured by the subjective vitality score; motivation and processes of change: perceptions of autonomy support from the advisor, satisfaction of the needs for competence, autonomy, and relatedness via physical activity, and motivational regulations for exercise. Discussion This trial will determine whether an exercise referral programme based on Self Determination Theory increases physical activity and other health outcomes compared to a standard programme and will test the underlying SDT-based process model (perceived autonomy support, need satisfaction, motivation regulations, outcomes) via structural equation modelling. Trial registration The trial is registered as Current Controlled trials ISRCTN07682833

    dbCRID: a database of chromosomal rearrangements in human diseases

    Get PDF
    Chromosomal rearrangement (CR) events result from abnormal breaking and rejoining of the DNA molecules, or from crossing-over between repetitive DNA sequences, and they are involved in many tumor and non-tumor diseases. Investigations of disease-associated CR events can not only lead to important discoveries about DNA breakage and repair mechanisms, but also offer important clues about the pathologic causes and the diagnostic/therapeutic targets of these diseases. We have developed a database of Chromosomal Rearrangements In Diseases (dbCRID, http://dbCRID.biolead.org), a comprehensive database of human CR events and their associated diseases. For each reported CR event, dbCRID documents the type of the event, the disease or symptoms associated, and—when possible—detailed information about the CR event including precise breakpoint positions, junction sequences, genes and gene regions disrupted and experimental techniques applied to discover/analyze the CR event. With 2643 records of disease-associated CR events curated from 1172 original studies, dbCRID is a comprehensive and dynamic resource useful for studying DNA breakage and repair mechanisms, and for analyzing the genetic basis of human tumor and non-tumor diseases

    Development of prognostic models for Health-Related Quality of Life following traumatic brain injury

    Get PDF
    Background Traumatic brain injury (TBI) is a leading cause of impairments affecting Health-Related Quality of Life (HRQoL). We aimed to identify predictors of and develop prognostic models for HRQoL following TBI. Methods We used data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) Core study, including patients with a clinical diagnosis of TBI and an indication for computed tomography presenting within 24 h of injury. The primary outcome measures were the SF-36v2 physical (PCS) and mental (MCS) health component summary scores and the Quality of Life after Traumatic Brain Injury (QOLIBRI) total score 6 months post injury. We considered 16 patient and injury characteristics in linear regression analyses. Model performance was expressed as proportion of variance explained (R-2) and corrected for optimism with bootstrap procedures. Results 2666 Adult patients completed the HRQoL questionnaires. Most were mild TBI patients (74%). The strongest predictors for PCS were Glasgow Coma Scale, major extracranial injury, and pre-injury health status, while MCS and QOLIBRI were mainly related to pre-injury mental health problems, level of education, and type of employment. R-2 of the full models was 19% for PCS, 9% for MCS, and 13% for the QOLIBRI. In a subset of patients following predominantly mild TBI (N = 436), including 2 week HRQoL assessment improved model performance substantially (R-2 PCS 15% to 37%, MCS 12% to 36%, and QOLIBRI 10% to 48%). Conclusion Medical and injury-related characteristics are of greatest importance for the prediction of PCS, whereas patient-related characteristics are more important for the prediction of MCS and the QOLIBRI following TBI.Development and application of statistical models for medical scientific researchAnalysis and support of clinical decision makin

    The spliceosome U2 snRNP factors promote genome stability through distinct mechanisms; transcription of repair factors and R-loop processing

    Get PDF
    Recent whole-exome sequencing of malignancies have detected recurrent somatic mutations in U2 small nuclear ribonucleoprotein complex (snRNP) components of the spliceosome. These factors have also been identified as novel players in the DNA-damage response (DDR) in several genome-wide screens and proteomic analysis. Although accumulating evidence implies that the spliceosome has an important role in genome stability and is an emerging hallmark of cancer, its precise role in DNA repair still remains elusive. Here we identify two distinct mechanisms of how spliceosome U2 snRNP factors contribute to genome stability. We show that the spliceosome maintains protein levels of essential repair factors, thus contributing to homologous recombination repair. In addition, real-time laser microirradiation analysis identified rapid recruitment of the U2 snRNP factor SNRPA1 to DNA-damage sites. Functional analysis of SNRPA1 revealed a more immediate and direct role in preventing R-loop-induced DNA damage. Our present study implies a complex interrelation between transcription, mRNA splicing and the DDR. Cells require rapid spatio-temporal coordination of these chromatin transactions to cope with various forms of genotoxic stress
    corecore