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Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and 

therapeutic resistance. BRCA2 has a fundamental role in error-free DNA repair but 

additionally sustains genome integrity by promoting RAD51 nucleofilament formation at 

stalled replication forks. CDK2 phosphorylates BRCA2 (pS3291-BRCA2) to limit stabilising 

contacts with polymerised RAD51, however, how replication stress modulates CDK2 activity 

and whether loss of pS3291-BRCA2 regulation results in genomic instability of tumours is 

not known. Here we demonstrate that the hippo pathway kinase LATS1 interacts with CDK2 

in response to genotoxic stress to constrain pS3291-BRCA2 and support RAD51 

nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also 

show that LATS1 forms part of an ATR mediated response to replication stress that requires 

the tumour suppressor RASSF1A. Importantly, perturbation of the ATR-RASSF1A-LATS1 

signalling axis leads to genomic defects associated with loss of BRCA2 function and 

contributes to genomic instability and ‘BRCA-ness’ in lung cancers. 

 

Replication stress occurs when the progression of a DNA replication fork is impeded by base 

lesions, insufficient nucleotides (e.g. hydroxyurea, hypoxia) or oncogene enforced errors and 

is typified by accumulation of single stranded DNA (ssDNA)1-5. Increasing evidence suggests 

that failure to appropriately protect this ssDNA leads to nucleolytic attack, compromising the 

integrity of nascent DNA at stalled forks and results in increased chromosomal aberrations in 

human precancerous lesions6-9.   Recently, components of the Homologous Recombination 

(HR) pathway have been identified to have a repair independent function that protects 

nascent DNA at stalled replication forks8-11. BRCA1/2 and FANCD2 tumour suppressors 

promote the formation of RAD51 nucleofilaments on ssDNA at stalled forks to prevent MRE11 

nucleolytic  activity and thereby facilitate restart after resolution of replication stress8-10,12,13. 

Failure to efficiently stabilise RAD51 nucleofilaments at stalled forks leads to DNA damage 

and is purported to be the source of the genomic instability observed in BRCA1/2 mutation 

carriers and Fanconi Anaemia patients9.  

Formation of a nucleofilament requires initial association of RAD51 monomers with 

BRC repeats of BRCA2 before polymerisation onto ssDNA. An additional contact of 

polymerised RAD51 with the C-terminal TR2 domain of BRCA2 stabilises the nucleoprotein 

filament specifically at replication forks14,15. CDK dependent phosphorylation of S3291 within 

the TR2 domain of BRCA2 decreases binding affinity for polymerised RAD51, resulting in 
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nucleofilament disruption16. Upon genotoxic stress, levels of pS3291-BRCA2 are reported to 

decrease to ensure that RAD51 filament stabilisation can contribute to fork protection and 

HR8,16.  

LATS1 is a central Ser/Thr kinase of the hippo (MST) tumour suppressor pathway17,18 

that restricts malignant transformation19. We previously reported that activation of MST2 in 

response to DNA damage requires direct phosphorylation of RASSF1A on S131 by the apical 

sensor of DNA double strand breaks, ATM. In response to ATM activation, MST2 targets LATS1 

which in turn phosphorylates the transcriptional co-activator YAP1 promoting its interaction 

with p73 and induction of apoptosis20. Phosphorylation of Ser131 promotes RASSF1A 

dimerisation and orientates the associated MST2 monomers to allow stimulation of MST2 

kinase activity20. The minor allele of a common Single Nucleotide Polymorphism (SNP) 

(RASSF1 c.397G>T) results in RASSF1A-A133S, which fails to get phosphorylated by ATM or 

activate MST2/LATS121 and is associated with poor overall survival and early cancer onset in 

BRCA2-mutation carriers22-24. RASSF1A is also a frequent site of epigenetic inactivation in 

sporadic human malignancies with increasing prognostic significance across multiple tumour 

types25-27. Thus, loss of function via genetic or epigenetic routes can lead to RASSF1A 

inactivation, loss of hippo pathway signalling and promotes malignant transformation.  

LATS1 was identified in a screen for ATM/ATR responsive substrates that are required 

for genomic stability28. In this study we show that in response to fork stalling LATS1 interacts 

with CDK2, restricting pS3291-BRCA2 and thereby facilitating RAD51 nucleofilament stability. 

This interaction relies on the ATM and Rad3-related kinase (ATR), the main sensor of 

replication stress29 that phosphorylates RASSF1A on Ser131 to activate LATS1. We find that 

the RASSF1A/LATS1 signalling cascade is required during genotoxic stress to support nascent 

DNA stability at stalled forks. Moreover, we provide evidence that compromised signalling via 

genetic or epigenetic events leads to accumulation of chromosomal aberrations and 

introduction of a ‘BRCAness’ phenotype in tumours.  
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Results 

LATS1 is necessary for establishment of RAD51 nucelofilaments in response to stress 

To gain insight into LATS1 function in response to genotoxic stress we compared the cell cycle 

profiles of Mouse Embryonic Fibroblasts (MEFs) derived from mice genetically ablated for 

Lats1 with their wild type (wt) littermates after exposure in γIR. In line with the findings 

presented in the genetic screen performed by Matsuoka et al28., loss of LATS1 through genetic 

ablation (Lats1-/- MEFs) or siRNA mediated silencing, results in enhanced G2/M retention of 

cells experiencing genotoxic stress (Fig. 1a and Supplementary Fig. 1a). We found that 

irradiated cells accumulate in G2/M due to elevated levels of γH2AX, a marker of DNA damage 

and replication fork stalling12, which persisted in Lats1-/- MEFs (Fig. 1b and Supplementary Fig. 

1b,d) and LATS1 depleted U2OS cells (Supplementary Fig. 1c,e) but was resolved in control 

cells. To confirm that high γH2AX levels are indeed due to increased DNA damage, cells were 

subjected to alkaline single-cell electrophoresis where bright comet tails indicate chromatin 

unwinding as a result of DNA breaks. As observed for γH2AX, Lats1-/- MEFs similarly displayed 

more DNA breaks (Supplementary Fig. 1f) and re-expression of LATS1 or a kinase dead 

derivative LATS1-D846A (LATS1-KD) rescued the phenotype, indicating that LATS1 functions 

to protect against DNA damage independently of kinase activity (Fig. 1b, Supplementary Fig. 

1b,d,f). We reasoned that LATS1 either facilitates DNA repair or prevents excessive DNA 

damage upon genotoxic stress during S phase. Matsuoka et al. previously observed that loss 

of LATS1 leads to increased γH2AX levels and suggested a potential role in HR, the main DNA 

double strand break repair pathway in S phase cells28. To test whether LATS1 facilitates DNA 

repair via HR, we first assessed recombination competence using the I-SceI assay, where HR 

activity is required to restore a functional copy of GFP and can be scored by FACS. We also 

monitored RAD51 foci by immunofluorescence as a marker of BRCA2 mediated loading of 

RAD51 onto resected DNA at break sites which is a prerequisite for HR. Surprisingly, while 

depletion of LATS1 did not result in significant differences in HR competence (Fig. 1c, 

Supplementary Fig. 2a), RAD51 foci appeared retarded in response to γIR (Supplementary Fig. 

2b). This suggests that elevated γH2AX due to LATS1 ablation is associated with ineffective 

RAD51 nucleofilament formation. RAD51 catalyses DNA strand exchange to provide a 

template for HR30, however, RAD51 also functions in genome protection via a HR independent 

pathway by forming nucleofilaments that stabilise stalled replication forks9,10,31.  
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To determine whether LATS1 contributes to RAD51 foci establishment at stalled forks we 

depleted nucleotide pools with hydroxyurea (HU) to specifically arrest replication forks.  After 

6 hours of HU exposure, RAD51 foci were evident in control cells (Fig. 1d) and importantly 

these were independent of HR associated repair of double strand breaks (p53BP1+ve) that 

occur at later time points (>10hr HU)32,33. In response to HU induced stalled forks, wt MEFs 

form protective RAD51 filaments on nascent ssDNA, however, RAD51 foci fail to establish in 

Lats1-/- MEFs under the same conditions (RAD51+ve/p53BP1-ve cells in Fig. 1d). Reconstitution 

of Lats1-/- MEFs with either LATS1 or a LATS1 kinase dead derivative (LATS1-KD) restored 

RAD51 foci, indicating that LATS1 promotes RAD51 nucleofilaments at stalled replication forks 

(Fig. 1d). We found that MST2 mediated activation of LATS1 is required to establish RAD51 

foci, while the classical substrate YAP is dispensable, correlating with a kinase redundant role 

for LATS1 and a regulatory output for the hippo pathway independent of YAP (Supplementary 

Fig. 2c). Interestingly, despite the well described role of LATS1 in the regulation of tissue size, 

discrepancies between the ablation of Lats1 in mice and conditional expression of constitutive 

Yap1 mutants in murine liver suggests the existence of additional mechanisms through which 

LATS1 suppresses tumour formation34-36, most notably the potential kinase independent 

regulation of CDK37. Moreover, LATS1 has been shown to interact with CDK1 in mitosis 

modulating its kinase activity37.  

LATS1 interacts with CDK2 in response to stress and modulates BRCA2 phosphorylation  

Exogenous expression of LATS1 homologs bind and restrict CDK kinase activity37, but the 

physiological relevance of an endogenous complex has remained elusive. As CDK activity is 

reported to destabilise RAD51 nucleofilaments, we considered that LATS1 may exert its 

effects through modulation of CDK activity. In agreement with previous evidence, we were 

unable to detect an interaction between CDK1/2 and LATS1 in cycling cells, however, upon 

exposure of cells to γIR or HU induced replication fork stalling, association of endogenous 

CDK2 and LATS1 was readily observed in reciprocal immunoprecipitates (Fig. 2a). To map the 

LATS1/CDK2 interaction we generated LATS1 deletion mutants (Fig. 2b) that indicated that 

binding occurs in the N-terminus (Fig. 2b, lanes 1, 4) and requires residues 1-200 (Fig. 2b, 

lanes 2, 3 and 5) which encode an Ubiquitin Associated (UBA) domain that directs distinct 

biological functions of LATS paralogues38,39. In line with defective CDK2 association, the 

LATS1Δ200 derivative was also incapable of establishing RAD51 foci (Fig. 2c). As previously 
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reported for wts/cdc2 and LATS1/CDK1 complexes37, we find that cyclin partners were 

excluded from the CDK2 fraction that co-immunoprecipitates with LATS1, leading to loss of 

substrate targeting and kinase activity (Fig. 2d).   

CDK2 mediated C-terminal phosphorylation of BRCA2 leads to unstable RAD51 

nucleofilaments16, therefore we reasoned that LATS1 may facilitate RAD51 foci at stalled forks 

via preventing phosphorylation of S3291-BRCA2. To test this we addressed pS3291-BRCA2 

levels after γIR and HU exposure and found a dramatic elevation of pS3291-BRCA2 in the 

absence of LATS1, while exogenous LATS1 expression restores control levels (Fig. 2e, 

Supplementary Fig. 3a). Following γIR, pS3291-BRCA2 levels decrease to facilitate fork 

stability and HR16, however loss of LATS1 results in maintenance of phosphorylation levels 

and correlates with lower RAD51 foci and increased damage (Fig. 1b, d, 2e and Supplementary 

Fig. 2b). In nocodozol arrested cells, where CDK1 is responsible for pS3291-BRCA216,40,  higher 

but identical kinetics to cycling cells were observed, in keeping with LATS1 ability to associate 

with CDK1 (Supplementary Fig. 3a). Furthermore, in vitro phosphorylation of a TR2-domain 

peptide indicates that CDK2 activity was lower in γIR treated Lats1+/+ compared to Lats1-/- 

MEFs (Supplementary Fig. 3b). Together, these data provide a model where LATS1 binds 

CDK2, inhibiting BRCA2-TR2 domain phosphorylation and allows RAD51 filament assembly on 

ssDNA in response to genotoxic stress. 

Activation of RASSF1A by ATR is necessary for LATS1 binding to CDK2 

In response to DNA damage, RASSF1A activates the hippo cascade via MST2 and LATS1 20,41.  

In H1299 lung cancer cells that lack RASSF1A due to promoter methylation27, LATS1 is unable 

to associate with CDK2 in response to either HU or γIR (Fig. 3a lanes 4 and 7), but the 

interaction was restored upon RASSF1A expression (Fig. 3a, lanes 5 and 8). In response to DNA 

double strand breaks, ATM targets RASSF1A on S131, but fails to activate the genetic variant 

RASSF1A-A133S at the same recognition site21. In contrast to wt RASSF1A, expression of 

RASSF1A-A133S could not rescue association with CDK2 (Fig. 3a, lanes 6 and 9). We next 

addressed the levels of pS3291-BRCA2 in response to stress after RASSF1A depletion and the 

ability of Rassf1A genetically null MEFs (Rassf1A-/-) to form RAD51 filaments on nascent DNA 

after exposure to HU. In response to either γIR or HU, pS3291-BRCA2 levels decrease but are 

maintained in the absence of RASSF1A, indicating a greater level of CDK2 activity (Fig. 3c). 
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Moreover Rassf1A-/- MEFs are unable to form stable Rad51 nucleofilaments in response to 

HU (Fig. 3b). 

Short HU treatments that do not result in double strand breaks lead to ATR rather than ATM 

activation, which then elicits appropriate cellular responses to both protect stalled DNA forks 

and promote resolution of breaks or lesions29. ATM recognition sites have been shown to be 

frequently targeted by ATR in response to single strand breaks or replication stress42,43, 

prompting us to consider that RASSF1A may be targeted by ATR in response to fork stalling. 

To this end, U2OS cells were transiently transfected with FLAG-RASSF1A or FLAG-RASSF1A-

A133S and exposed to HU in the presence of a specific ATR inhibitor, VE-821. We found that 

HU treatment elevates phosphorylation of Ser131 (Fig. 3d, lane 5), while addition of VE-821 

inhibits HU dependent increase in pS131-RASSF1A, indicating that RASSF1A is an ATR target 

(Fig. 3d, lane 8). Similar to ATM mediated targeting, the polymorphic variant did not present 

any detectable levels of phosphorylation in response to ATR activation (Fig. 3d, lanes 6 and 

9).  Taken together, the above data highlight that ATR activates the RASSF1A-LATS1-CDK2 

cascade in response to replication stress.  

Disruption of the RASSF1A/LATS1 axis leads to genomic instability 

Failure to establish RAD51 nucleofilaments on ssDNA during replication stalling leads to 

MRE11 nuclease mediated degradation of nascent DNA and subsequent genomic instability8-

11. To test whether loss of RASSF1A-LATS1 signalling compromises the stability of nascent DNA 

at stalled forks we employed DNA fiber analysis to monitor track length of replicated DNA via 

incorporation of halogenated base analogues that can be detected by immunofluorescence. 

DNA fibers of Lats1+/+, Lats1-/- and Lats1-/- cells expressing mycLATS1 did not differ in the 

length of CldU (nascent DNA) (Supplementary Fig. 4a). However, after 5 hours of HU 

treatment CIdU tracks appeared shorter in Lats1-/- MEFs in comparison to Lats1+/+ MEFs (6.6 

± 0.14 and 10.09 ± 0.2 μm respectively, p=0.0001) and were restored  after re-expression of 

mycLATS1 (10.3 ± 0.6 μm, p=0.02) (Fig. 4a and Supplementary Fig. 4c). To establish whether 

shorter CIdU tracks in the absence of LATS1 is due to the exposure of the nascent DNA to 

MRE11 nucleolytic activity, the specific MRE11 inhibitor mirin was used during the HU 

treatment. Lats1-/- MEFs that were treated with mirin, present CIdU tracks with a similar 

length to control MEFs (8.9 ± 0.91 and 9.2 ± 0.8 μm respectively) (Fig. 4b). RASSF1A ablation 

had identical effects on fork integrity (CIdU length in Rassf1A+/+ vs Rassf1A-/- MEFs of 8.8 ± 0.4 
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and 5.1 ± 0.3 μm respectively, p=0.01), which were efficiently rescued by the re-expression of 

FLAG-RASSF1A (8.08 ± 0.6 μm) but not the polymorphic mutant (5.3 ± 0.1 μm) (Fig. 4c, 

Supplementary Fig. 4b, d), indicating that ATR phosphorylation of RASSF1A is necessary to 

protect nascent DNA at stalled forks. Interestingly, both Lats1-/- and Rassf1A-/- MEFs show 

shorter second label IdU tracks (Supplementary Fig. 5a, b) indicating defective replication 

restart after the HU removal, which is independent of MRE11 nucleolytic activity (Fig. 4b). 

RAD51 has been proposed to facilitate fork regression and formation of a Holliday junction 

intermediate or ‘‘chickenfoot’’, which offers a more favourable substrate for restart12,13 and 

maybe regulated by components that protect fork integrity44, including RASSF1A and LATS1 . 

To determine whether compromised fork integrity in the absence of the RASSF1A/LATS1 axis 

leads to genomic instability and properties of defective BRCA2 regulation8, we prepared 

metaphase spreads from Lats1-/- and Rassf1A-/- MEFs and checked for typical chromosomal 

aberrations compared to controls. In line with previous identification of lagging chromosomes 

in Rassf1A-/- mice45, addition of HU results in increased accumulation of chromosomal 

aberrations both in the Lats1 and Rassf1A null genetic backgrounds compared to MEFs from 

littermate controls (aberrations/metaphase: Lats1+/+ 0.45 vs Lats1-/- 4.1 and  Rassf1A+/+ 0.6 vs 

Rassf1A-/- 4.0) indicating that deletion of the RASSF1A/LATS1 axis induces a ‘BRCA-ness’ 

phenotype after exposure to stress (Fig. 5a, b and Supplementary Fig. 6a). Similarly, depletion 

of either LATS1 or RASSF1A from U2OS, increased chromosome aberrations 

(aberrations/metaphase: control 0.5 vs siLATS1 1.4 or siRASSF1A 1.5, Fig. 5c and 

Supplementary Fig. 6b) and the number of micronuclei arising from DNA fragments of broken 

chromosomes (9.6% in siNT versus 18.4% in siLATS1 and 18.2% in siRASSF1A respectively, 

Supplementary Fig. 6d). Moreover the endemic genomic instability observed in H1299 cells 

exposed to HU (RASSF1Amethylated), was rescued by re-expression of RASSF1A, but not by the 

polymorphic variant, explaining the predisposition to tumourigenesis of patients that carry 

this variant (Fig. 5d and Supplementary Fig. 6c)23. Moreover, depletion of LATS1 with siRNA 

ablated the RASSF1A mediated protection of replication stressed H1299 cells, suggesting that 

RASSF1A contributes to the maintenance of genomic stability via LATS1 (Fig. 5d, 

Supplementary Fig. 6c).  

Methylation of RASSF1 is a prognostic factor for poor overall survival in lung cancer and 

decreased therapeutic efficiency to DNA damaging agents in the clinic46. To test our 
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hypothesis that this is due to genomic instability, we used publicly available data from the 

Cancer Genome Atlas (TCGA) that contains genomic characterization data and sequence 

analysis of tumour genomes. Using the lung adenocarcinoma cohort, which displays frequent 

hypermethylation of RASSF1, we examined possible correlations between RASSF1A promoter 

methylation status and Copy Number Variation (CNV) of the genome. In this cohort (TCGA 

Lung adenocarcinoma; April 2014), 188 patients had available data and were separated in two 

groups based on levels of RASSF1 promoter methylation (low<0.3 and high>0.3) and further 

divided in 4 subgroups based on the percentage of the genome that was altered (0-0.1%, 0.1-

0.2%, 0.2-0.3% and >0.3%). We found an overall correlation between methylation of the 

RASSF1 promoter and the extent of genomic instability (Fig. 6) that is independent of base 

substitutions (Supplementary Fig. 7); indicative of complex rearrangements that occur after 

collapsed replication forks observed in Fig. 5. The statistical power is derived from the 

extremes of the population where relatively stable genomes (<0.1% CNV) have low levels of 

methylation and unstable genomes (>0.3% CNV) have high methylation of the RASSF1 

promoter (p=0.0054), validating that RASSF1A functions to protect genome integrity (Fig. 6). 

Thus, our data describes how ATR promotes BRCA2 dependent replication fork stability and 

identifies a single nucleotide polymorphism in RASSF1A as an allele displaying BRCAness. 

Moreover, epigenetic loss of RASSF1A in sporadic human malignancies similarly deregulates 

BRCA2 function, providing a link between the poor prognostic value of RASSF1A loss and 

BRCA-like phenotypes in common cancers.   
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Discussion 

 

Previous reports highlighted that depletion of LATS1 leads to genomic instability and tumour 

predisposition28,35,37. We find that LATS1 safeguards genome stability by ensuring stable 

nucleofilament formation on exposed ssDNA at stalled replication forks (Fig. 7). This is 

achieved via activation induced conformational changes in LATS1 that stimulate interaction 

with CDKs as originally suggested by Tao et al.35, and similarly is independent of LATS1 kinase 

activity. Moreover, in line with identification of LATS1 from screens for regulators of DNA 

damage26, the endogenous LATS1-CDK2 interaction occurs in response to replication stress. 

The core hippo pathway components, RASSF1A and MST1/2 kinase are responsible for 

activation of LATS1 and are inhibited by growth factor receptor signalling, KRASWT and RAF147-

49. In response to DNA damage, ATM activation results in phosphorylation of RASSF1A on 

Ser131, activating MST1/2 and LATS1 kinases leading to YAP/p73 proapoptotic complex 

formation and inhibition of YAP/TEAD mediated malignant transformation20,41,50. Failure to 

activate LATS1 in tumours provides support to KRASMUT driven oncogenesis through sustained 

YAP1 transcription51,52. However, inefficient activation of LATS1 is likely to have additional 

effects than solely regulation of YAP135-37,39. In this study we show that MST2 activity is also 

necessary for the establishment of RAD51 foci at stalled forks but YAP1 is dispensable, 

providing a new insight into how the core hippo pathway contributes to tumour suppression 

by maintaining genome integrity. 

 

Schlacher et al. proposed that efficient RAD51 nucleofilament formation on nascent DNA of 

stalled forks is dependent on RAD51 interaction with the TR2 domain of BRCA2 and cannot 

be restored by re-expression of classical RAD51 binding BRC repeats alone8,9. We show that 

ablation of LATS1 leads to increased pS3291-BRCA2 within the TR2 domain, which prevents 

RAD51 nucleofilaments during stalling and causes significant shortening in the nascent DNA 

strands due to MRE11 nucleaolytic activity (Fig. 7). While this is consistent with increased DNA 

damage, the persistent γH2AX foci after treatment with γIR could also indicate defective DNA 

repair. Although we did not observe defects in HR, more extensive studies are warranted to 

determine whether LATS1 plays a role in additional DNA repair pathways. Elevated γH2AX 

levels may also be attributed to a failure of the fork to restart after resolution of the 

replication stress. BRCA1/2 and FANCD2 tumour suppressors were originally described as 
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dispensable for restart8,9, however, fork recovery is also defective in Lats1-/- and Rassf1A-/- 

MEFs which is in line with several studies that indicate a requirement of RAD51 loading for 

efficient fork restart12,13. Moreover FANCD2 was recently reported to interact with BLM and 

facilitate fork recovery after stress44. The proposed role for the nascent DNA and fork 

regression being required for resolution of stalled fork architecture is controversial but would 

explain the role for RAD51 in restart.  

We show that LATS1-CDK2 interaction and establishment of RAD51 nucleofilaments are 

RASSF1A dependent. RASSF1A is the most common epigenetically inactivated gene in human 

tumours. Increasing number of studies have shown that RASSF1A methylation positively 

correlates with therapeutic resistance and poor survival, indicating the potential utility of 

RASSF1A as a prognostic/diagnostic marker25-27,53-55. The RASSF1 c.397G>T SNP results in 

distinct codon usage of Ala instead of Ser at position RASSF1A-133. The minor variant has a 

sub optimal ATM/ATR activation site and has been reported to act as a dominant allele that 

correlates with worse prognosis and early cancer onset in BRCA1/2 mutation carriers21,23,24. 

We demonstrate here that ATR activation is necessary for the triggering of the 

RASSF1A/LATS1 axis and that RASSF1A-Ser133 is unable to stimulate the pathway. Moreover 

our analysis of lung cancer patients provides a functional insight into how genomic instability 

and ‘BRCAness’ arises in sporadic tumours and may be identified by RASSF1A methylation in 

a wide variety of tumour types.  
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Figure legends   

Figure 1 

LATS1 regulates RAD51 nucleofilament formation in response to replication stress in an HR 

independent manner. (a) Propidium Iodide profiles at the indicated time points after 

exposure to 10 Gy γIR of wild type MEFs, and Lats1-/- MEFs transfected with mycLATS1 or 

control plasmid. The percentage of cells in G1, S and G2/M is shown. (b) Lats1+/+, Lats1-/- and 

Lats1-/- cells expressing wt hLATS1 (Lats1-/-mycLATS1) or a hLATS1 kinase dead derivative LATS1-

D846A (Lats1-/-LATS1KD) were treated with 10 Gy γIR. Total cell extracts were isolated at the 
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indicated time points after irradiation and analysed for γH2AX expression. Both wtLATS1 and 

LATS1KD reconstitute the DNA repair kinetics after damage. Representative blots are shown. 

Error bars represent standard deviation from n=3 independent experiments. (c) HR assay of 

a single DNA break induced by I-SceI endonuclease, using the DR-GFP reporter in U2OS cells 

treated with the indicated siRNAs. GFP-positive cells indicate HR events after I-SceI 

expression. Error bars represent standard deviation from n=3 independent experiments (d) 

Lats1+/+, Lats1-/-, Lats1-/-mycLATS1 and Lats1-/-mycLATS1KD MEFs  were treated with Hydroxyurea 

(HU) for 4 or 6 hours, fixed and assessed for RAD51 and p53BP1 foci formation. The 

percentage of RAD51 positive cells without double strand breaks (negative for p53BP1 

staining) was quantified and presented. At least 300 cells were scored per conditions in n=3 

independent experiments. Error bars represent standard deviation. Statistical significance 

was determined by a two-tailed, unpaired t-test. * P< 0.05, ** P<0.01, ***P<0.001. Scale bar 

10 μm. 

 

Figure 2 

LATS1 interacts with CDK2 in response to genotoxic stress modulating its kinase activity 

towards BRCA2. (a) U2OS cells were treated with 4 Gy γIR or 2 mM HU for 4 hours, lysed and 

total cell extracts were immunoprecipitated with LATS1 or CDK2 antibodies. Total cell lysates 

and immunoprecipitates were analysed by Western Blot and probed with antibodies against 

LATS1 and CDK2. (b) U20S cells were transiently transfected with full length Myc-LATS1 or 

LATS1 deletion mutants: Myc-LATS1Δ100, Myc-LATS1Δ200, Myc-ΔC-LATS1 (aa 1-589) or Myc-

ΔN-LATS1 (aa 589-1130). 48 hours post transfection cells were treated with HU for 4 hours 

prior to Myc tag immunoprecipitation. Western blot analysis of total cell extracts and 

immunoprecipitates is shown.  (c) Lats1+/+, Lats1-/-, Lats1-/-mycLATS1 and Lats1-/-mycLATS1Δ200 MEFs 

were treated with HU for 6 hours, fixed and stained for RAD51. 200 cells were scored per 

condition in n=3 independent experiments. Error bars represent standard deviation. 

Statistical significance was determined by a two-tailed, unpaired t-test. * P< 0.05, ** P<0.01, 

***P<0.001. Scale bar 10 μm. (d) Total cell lysates and LATS1 immunoprecipitates of 

untreated or treated with γIR U2OS cells probed for the indicated antibodies. (e) Upper panel, 

detection of pS3291-BRCA2 in lysates of HT1080 cells transfected with control siRNA or siRNA 

against LATS1 and pcDNA3.1 (control) or mycLATS1 constructs. 48 hours post transfection 

cells were subjected to 4 Gy γIR and total cell extracts were collected over a 300 min time 

course. Quantitation of pS3291-BRCA2 over a time course presented in Supplementary Fig. 

3a, is shown. Lower panel, Lats1+/+ and Lats1-/- MEFs were treated with HU for the indicated 

times. Total cell extracts were collected and blotted for pS3291-BRCA2.  Representative image 

of n=3 independent experiments is shown. Error bars represent the variation in the 

densitometry of the representative image. 
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Figure 3 

Tumour suppressor RASSF1A stimulates LATS1/CDK2 interaction in response to ATR 

activation (a) H1299 cells (methylated RASSF1 gene promoter) were transiently transfected 

with pcDNA3.1, FLAG-RASSF1A (FLAG-R1A) or FLAGR1A-A133S and treated with 2 mM HU for 

5 hours or 4 Gy γIR. LATS1 was immunoprecipitated from total cell lysates and co-

immunoprecipitation of CDK2 was examined by Western Blot analysis.  (b) Upper, PCR 

genotyping of genomic DNA, using a combination of two primer pairs (either RSF-5/RSF-3 or 

RSF-C/RSF-3), which can distinguish between Rassf1A+/+ and Rassf1A-/- genotypes.  Lower, 

RAD51 foci formation in Rassf1A+/+ and Rassf1A-/- MEFs after exposure to 2 mM HU for the 

indicated periods. 200 cells were scored in each condition in n=3 independent experiments 

and bar graph represents quantification. Error bars represent standard deviation. Statistical 

significance was determined by a two-tailed, unpaired t-test. * P< 0.05, ** P<0.01, 

***P<0.001. Scale bar 10 μm. (c) Upper, U2OS cells were treated with siRNA against RASSF1A 

or control siRNA (siNT) and subjected to 4 Gy γIR. Cell extracts were collected at the indicated 

time points and blotted for pS3291-BRCA2. Lower, Rassf1A+/+ and Rassf1A-/- MEFs were 

treated with HU for the indicated times. Total cell extracts were collected and blotted for 

pS3291-BRCA2 (d) U2OS cells were transiently transfected with pcDNA3.1, FLAG-R1A or FLAG-

R1A-A133S. Cells were treated with 2 mM HU for 5 hours in the presence or absence of the 

specific ATR inhibitor VE-821. RASSF1A phosphorylation on Ser131 was assessed in FLAG 

immunoprecipitates. 

 

Figure 4 

Deletion of RASSF1A/LATS1 axis compromises the stability of nascent DNA at stalled forks. 

(a) CIdU tract length distributions analysis from DNA fibres from Lats1+/+, Lats1-/- and Lats1-/-

mycLATS1 MEFS in the presence of 2 mM HU. Median tract lengths and stand deviations are given 

in parentheses. Representative pictures for each condition are shown in Supplementary Fig. 

4c. Western Blots indicate LATS1 expression. (b) CIdU tract length distributions from DNA 

fibres from Lats1+/+, Lats1-/- and Lats1-/- MEFS treated with the MRE11 inhibitor, mirin, after 

treatment with 2 mM HU and representative pictures for each condition. (c) CIdU tract length 

distributions from DNA fibres from Rassf1A+/+, Rassf1A-/-, Rassf1A-/-FLAGR1A and Rassf1A-/-FLAG-

R1A-A133 MEFs exposed in 2 mM HU.  Representative pictures for each condition are shown in 

Supplementary Fig.  4d. Western Blots indicate Flag-RASSF1A expression (* indicates non-

specific band in MEF lysates). Sketch above delineates experimental design. At least n=100 

DNA tracks were scored in each condition. Scale bars 10 μm. 



17 
 

Figure 5 

Deletion of RASSF1A/LATS1 axis induces chromosomal aberrations. Number of 

chromosomal aberrations/metaphase spread of (a) Lats1+/+ and Lats1-/- MEFs or (b) Rassf1A+/+ 

and Rassf1A-/- with or without HU prior to colcemid addition. (c) U2OS cells were treated with 

control siRNA or siRNA against LATS1 or RASSF1A and exposed to HU prior to colcemid 

addition. The number of aberrant chromosomes/metaphase spread and representative 

metaphase spreads from HU treated cells are displayed. (d) H1299 cells were transfected with 

pcDNA3.1, FLAG-RASSF1A or FLAG-RASSF1A-A133S and exposed to HU prior to colcemid 

addition. The number of aberrant chromosome/metaphase in each condition and 

representative pictures from spreads of HU treated cells are shown. n=20 metaphases from 

MEFS and n=30 metaphases from cancer cells were scored per condition. Aberrant 

chromosomes in each metaphase are denoted by red asterisk and displayed in higher 

magnification. Error bars represent standard error of the mean. Statistical significance was 

determined by a two-tailed, unpaired t-test. P values are given on the figure. Scale bar 10 μm. 

 

 

Figure 6 

RASSF1A methylation correlates with increased CNV in lung cancer patients. Correlation of 

RASSF1 promoter methylation (illumina HM450) with genomic Copy Number Variation (CNV) 

in lung adenocarcinoma dataset from the cancer genome atlas database (TCGA, Provisional). 

Bar graph representing the percentage of patients in each subgroup based on extent of 

genome alterations (% of the genome) in cohorts with high (>0.3) or low (<0.3) RASSF1 

promoter methylation. A total of 188 patients with Lung Adenocarcinoma were analysed 

using the Fisher’s Extract test. Absolute numbers (n) and p values are presented in the table.  

Figure 7 

Model of RASSF1A/LATS1/CDK2 signalling and the protection of stalled replication forks. (a) 

In response to fork stalling and ATR activation, RASSF1A triggers LATS1-CDK2 interaction and 

restricts CDK2 kinase activity towards BRCA2 promoting the establishment of RAD51 

filaments. (b) Upon genetic or epigenetic inactivation of RASSF1A, CDK2 remains active 

resulting in increased levels of pS3291-BRCA2, exposure of nascent DNA to MRE11 nucleolitic 

activity and genomic instability.  
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