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DERIVATION OF THE LANGEVIN EQUATION

The microscopic dynamics of the driven-dissipative Rydberg ensemble is described by the

master equation Eq. (1). For realistic system sizes required for SOC, it becomes, however,

intractable due to the fast growth of the Hilbert space. In order to reduce this theoretical

complexity, we eliminate irrelevant degrees of freedom and map the dynamics to the Langevin

equation Eq. (2).

Adiabatic elimination of atomic coherences — In the presence of strong dephasing γde � Ω

the evolution of the atomic coherences σ̂grl , σ̂
0r
l is dominated by a rapid dissipative decay

towards their time averaged expectation values 〈σ̂α,rl 〉T = 1
T

∫ T
0

Tr [σ̂α,rl ρ̂] dt, where T ≈ Ω−1

is the typical time scale for a facilitated Rabi oscillation, Tr is the trace over the many-body

Hilbert space and α = g, 0. The coherences are static on many-body time scales and will be

adiabatically eliminated by solving

0
!

= ∂t〈σ̂α,rl 〉 = Tr [σ̂α,rl ∂tρ̂] . (S1)
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Here ∂tρ̂ is set by Eq. (1M). After eliminating the coherences, the system evolution is governed

by the remaining degrees of freedom, i.e. the average densities

ml ≡ Tr [σ̂rrl ρ̂] , nl ≡ Tr [(σ̂rrl + σ̂ggl )ρ̂] . (S2)

Their equation of motion is

∂tml = Tr [σ̂rrl ∂tρ̂] , ∂tnl = Tr [(σ̂rrl + σ̂ggl )∂tρ̂] (S3)

and ∂tρ̂ is set by Eq. (1M) and constrained to configurations that fulfill Eq. (S1). Explicit

evaluation yields

∂tnl = −Γml + ξnl , (S4)

∂tml = Tr

(
Ω2(Γ + γde)(σ̂

gg
l − σ̂rrl )

(Γ + γde)2 + 4(V̂l −∆)2
ρ̂

)
− Γml + ξml . (S5)

The Markovian noise fields ξm,nl enforce the non-equilibrium fluctuation relation, which is

imprinted by the dissipative environment (S2). The statistics of nl,ml, imprinted by drive

and dissipation, are expressed by the vanishing mean 〈ξn,ml 〉 = 0 and non-vanishing variance

var(ξn,ml ) 6= 0, and the Markovianity, i.e. locality in time and space, of the noise. Their

variance is determined by the generalized Einstein relation

var(ξml ) = ∂t〈(σ̂rrl )2〉 − 2〈σ̂rrl ∂tσ̂rrl 〉,

= τnl + (Γ + 2τ)ml +O(m2
l ), (S6)

and similar for ξnl with σ̂rrl → σ̂rrl +σ̂ggl . In the limit τ → 0, the variance of ξml is multiplicative

in ml which is a necessary condition for a robust absorbing phase.

Equation (S5) is a coupled set of differential equations describing the Rydberg population

and total remaining population for each atom, satisfying the completeness relation σ̂rrl +

σ̂ggl + σ̂00
l = 1. Interatomic interactions enter as an effective detuning V̂l = C6

∑
l′ 6=l σ̂

rr
l′ /|rl,l′ |6,

where |rl,l′| = |rl − rl′ | is the distance between atom l and l′ [1].

In order to expand the trace in Eq. (S5) in the projection operators σ̂rrl′ , one exploits the

fact that σ̂rrl′ = (σ̂rrl′ )2. For an arbitrary function f of the projectors σ̂rrl′ , up to linear order

in the projection operators one finds f({σ̂rrl′ }) = f(0) +
∑

m[f(σ̂rrl′ 6=m = 0, σ̂rrm = 1)− f(0)]σ̂rrm .
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Consequently, the operator acting on atom l

Ω2(Γ + γde)

(Γ + γde)2 + 4(V̂l −∆)2
=

Ω2(Γ + γde)

(Γ + γde)2 + 4∆2︸ ︷︷ ︸
=τ

+

∑
l′

[
Ω2(Γ + γde)

(Γ + γde)2 + 4(∆− C6|rl,l′|−6)2
− τ
]
σ̂rrl′ + ..., (S7)

followed by higher order products of projectors (i.e. terms ∼ σ̂rrl′ σ̂
rr
m ). The first term on

the right hand side describes single particle excitations with rate τ , while the second term

describe the facilitated (de-)excitation of atom l by another atom l′ in the Rydberg state. This

describes a Lorentzian peaked at the facilitation radius |rl,l′| = (C6/∆)1/6 ≡ rfac and deviates

considerably from zero only for |rl,l′| ∈ [rfac − ∆rfac, rfac + ∆rfac] with ∆rfac = rfac
Γ+γde
12∆

.

Introducing a projector Πll′ with Πll′ = 1 if |rl,l′| ∈ [rfac − ∆rfac, rfac + ∆rfac] and zero

elsewhere, Eqs. (S5)-(S7) yield

∂tml =
(
τ +

∑
l′

Ω2Πll′ml′

Γ + γde

)
(nl − 2ml)− Γml + ξml . (S8)

Equation (S8) provides a good approximation to the facilitation rate assuming the

excitation density is small, but overestimates the true facilitation rate when there is several

Rydberg excitations in proximity to state l (due to truncating the expansion (S7) at first

order). An exact computation of the facilitation radius for w ≥ 1 excited states inside a

single shell shows that it grows as r
(w)
R = w1/6rR (in d = 3 dimensions). For a homogenous

distribution of atoms, this yields a facilitation rate that grows proportional to
√
w, which is

not a severe correction compared to the ∝ w growth predicted by Eq. (S8) if one bears in

mind the largely suppressed off-resonant excitation rate. More than a single excitation inside

the facilitation radius, i.e., w > 1, can only be realized via additional spontaneous excitation

events. The probability for w > 1 is a factor of O(10−4) smaller compared to w ≤ 1 and will

have no impact on the dynamics.

Continuum Limit — For the reported experiments the atoms are free to move on the

timescale of the slow SOC dynamics. However, the diffusion time scale (set by the temperature)

for distances of the order of the facilitation radius O(rfac) is about one order of magnitude

slower than the inverse Rabi frequency. This justifies an effectively static model for the

external degrees of freedom while ensuring that the the ground state density remains

approximately homogenous on length scales compared to the facilitation radius. Thus we
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can coarse grain the dynamics by averaging the densities over facilitation shells

ρ(r, t) ≡ N
∑

|rl−r|≤rfac

ml, n(r, t) ≡ N
∑

|rl−r|≤rfac

nl, (S9)

where N = (4π
3
r3

fac)
−1 is the normalization volume.

This coarse-graining procedure modifies the completeness relation compared to the single

atom case. An excited atom facilitates excitations at the border of the facilitation shell but

blocks the excitation for any atoms within the shell. Decay of a Rydberg excitation to a

removed state thus removes the blockade constrant on the remaining ground state atoms. At

the scale of the facilitation radius, the averaging procedure (S9) yields the effective rate of

decay into removed states is Γ→ bΓ and adds an effective decay rate back to the ground state

Γ(1 − b), where b = ρ(r, t)/n(r, t) ≈ const. Defining nt ≡ n(r, t), ρt ≡ ρ(r, t), the averaged

densities evolve as

∂tnt = −bΓρt + ξt, (S10)

∂tρt = −Γρt + ξt + (nt − 2ρt)
(
τ + Ω2

Γ+γde
M(ρt)

)
. (S11)

The averaged noise ξt remains Markovian in time and space with variance var(ξt) = τnt +

(Γ + 2τ)ρt. The nonlinearity M(ρt) is obtained from the execution of the density averaging

(S9) in the sum ∼
∑

l′ Πll′ml′ in Eq. (S8). It is a non-local function in space and has to

be read as ρtM(ρt) = ρ(r, t)
∫
r−r′∈Sfac

ρ(r′, t) with Sfac = [rfac −∆rfac, rfac + ∆rfac] being the

facilitation shell. Taking advantage of the smooth densities for |rll′ | = rfac we can perform a

Taylor expansion of ρ(r′, t), yielding

M(ρt) =M(1)ρt +
M(r2)

2
∇2ρt +O(∇4ρt), (S12)

where odd derivative terms vanished due to isotropy in space. The factors M(1) =
∫
r∈Sfac

1

and M(r2) =
∫
r∈Sfac

r2 are the averages of 1, r2 along the facilitation shell.

Including thermal diffusion with diffusion constant DT caused by the thermal motion of

the atoms this yields the final form of the Langevin equation

∂tnt = DT∇2nt − bΓρt + ξt, (S13)

∂tρt = (D∇2 + κnt − Γ− 2τ)ρt − 2κρ2
t + τnt + ξt. (S14)

In the experiment Γ/τ ≈ 104 and nt/ρt ≈ 20, justifying Γ + 2τ → Γ and nt + ρt → nt.

Together with the numerical simulations this yields the estimate b ≈ 0.05. Furthermore, the
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theoretical derivation predicts κ = Ω2

Γ+γde
M(1) ≈ 2πΩ2

3∆
r3

fac and D ≈ DT + nt
πΩ2

3∆
r5

fac. Assuming

van der Waals interactions rfac = (C6/∆)1/6 ≈ 1.7µm. The diffusion of excitations ∼ D is

primarily governed by fast facilitation of neighboring atoms and only marginally affected

by temperature, i.e. DT � nt
πΩ2

3∆
r5

fac. The numerical simulations of Eq.2 in the manuscript

presented in Fig. 1 of the manuscript for DT = 0 show that for experimentally relevant

parameters nt remains mostly homogeneous during the evolution since the diffusion of ρt

is sufficiently fast compared to the effective loss rate bΓ. Thus for the conditions of the

experiment atomic motion has very little impact on the qualitative SOC behaviour. However

this might change in some lattice systems for example, where additional geometric constraints

could have a more dramatic effect on the SOC dynamics.

The structure of the Langevin equations (S13), (S14) is obtained from the discussed,

controlled coarse graining procedure and is insensitive to minor variations of the microscopic

details. The effective parameters D,Γ, κ, b, τ , however, can be influenced by such variations,

that may include disorder, atomic motion and cooperative excitation processes, in the present

setup. For this reason, the predicted values above only serve as a rough guide and in order

to compare theoretical predictions with the experimental results we fit the data to mean field

solutions of Eq. (S13) to consistently determine the relevant parameters of the model.
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