6,373 research outputs found

    Seasonal cycles of ozone and oxidized nitrogen species in northeast Asia - 2:A model analysis of the roles of chemistry and transport

    Get PDF
    [1] The dominant factors controlling the seasonal variations of ozone (O-3) and three major oxidized nitrogen species, peroxyacetyl nitrate (PAN), nitrogen oxides (NOx), and nitric acid (HNO3), in northeast Asia are investigated by using a three-dimensional global chemical transport model to analyze surface observations made at Rishiri Island, a remote island in northern Japan. The model was evaluated by comparing with observed seasonal variations, and with the relationships between O-3, CO, and PAN. We show that the model reproduces the chemical environment at Rishiri Island reasonably well, and that the seasonal cycles of O-3, CO, NOy species, and VOCs are well predicted. The impact of local emissions on some of these constituents is significant, but is not the dominant factor affecting the seasonal cycles. The seasonal roles of chemistry and transport in controlling O-3 and PAN are revealed by examining production/ destruction and import/ export/deposition fluxes in the boundary layer over the Rishiri region. For O-3, transport plays a key role throughout the year, and the regional photochemical contribution is at most 10% in summer. For PAN, in contrast, transport dominates in winter, while in-situ chemistry contributes as much as 75% in summer. It is suggested that the relative contribution of transport and in-situ chemistry is significantly different for O-3 and PAN, but that the wintertime dominance of transport due to the long chemical lifetimes of these species is sufficient to drive the seasonal cycles of springtime maximum and summertime minimum characteristic of remote sites

    Quantum Spin Lenses in Atomic Arrays

    Full text link
    We propose and discuss `quantum spin lenses', where quantum states of delocalized spin excitations in an atomic medium are `focused' in space in a coherent quantum process down to (essentially) single atoms. These can be employed to create controlled interactions in a quantum light-matter interface, where photonic qubits stored in an atomic ensemble are mapped to a quantum register represented by single atoms. We propose Hamiltonians for quantum spin lenses as inhomogeneous spin models on lattices, which can be realized with Rydberg atoms in 1D, 2D and 3D, and with strings of trapped ions. We discuss both linear and non-linear quantum spin lenses: in a non-linear lens, repulsive spin-spin interactions lead to focusing dynamics conditional to the number of spin excitations. This allows the mapping of quantum superpositions of delocalized spin excitations to superpositions of spatial spin patterns, which can be addressed by light fields and manipulated. Finally, we propose multifocal quantum spin lenses as a way to generate and distribute entanglement between distant atoms in an atomic lattice array.Comment: 13 pages, 9 figure

    One-nucleon transfer reactions and the optical potential

    Full text link
    We provide a summary of new developments in the area of direct reaction theory with a particular focus on one-nucleon transfer reactions. We provide a status of the methods available for describing (d,p) reactions. We discuss the effects of nonlocality in the optical potential in transfer reactions. The results of a purely phenomenological potential and the optical potential obtained from the dispersive optical model are compared; both point toward the importance of including nonlocality in transfer reactions explicitly. Given the large ambiguities associated with optical potentials, we discuss some new developments toward the quantification of this uncertainty. We conclude with some general comments and a brief account of new advances that are in the pipeline.Comment: 7 pages, 5 figures, proceedings for the 14th International Conference on Nuclear Reaction Mechanisms, Varenna, June 201

    First simultaneous observations of flux transfer events at the high-latitude magnetopause by the cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars

    Get PDF
    Cluster magnetic field data are studied during an outbound pass through the post-noon high-latitude magnetopause region on 14 February 2001. The onset of several minute perturbations in the magnetospheric field was observed in conjunction with a southward turn of the interplanetary magnetic field observed upstream by the ACE spacecraft and lagged to the subsolar magnetopause. These perturbations culminated in the observation of four clear magnetospheric flux transfer events (FTEs) adjacent to the magnetopause, together with a highly-structured magnetopause boundary layer containing related field features. Furthermore, clear FTEs were observed later in the magnetosheath. The magnetospheric FTEs were of essentially the same form as the original “flux erosion events” observed in HEOS-2 data at a similar location and under similar interplanetary conditions by Haerendel et al. (1978). We show that the nature of the magnetic perturbations in these events is consistent with the formation of open flux tubes connected to the northern polar ionosphere via pulsed reconnection in the dusk sector magnetopause. The magnetic footprint of the Cluster spacecraft during the boundary passage is shown to map centrally within the fields-of-view of the CUTLASS SuperDARN radars, and to pass across the field-aligned beam of the EISCAT Svalbard radar (ESR) system. It is shown that both the ionospheric flow and the backscatter power in the CUTLASS data pulse are in synchrony with the magnetospheric FTEs and boundary layer structures at the latitude of the Cluster footprint. These flow and power features are subsequently found to propagate poleward, forming classic “pulsed ionospheric flow” and “poleward-moving radar auroral form” structures at higher latitudes. The combined Cluster-CUTLASS observations thus represent a direct demonstration of the coupling of momentum and energy into the magnetosphere-ionosphere system via pulsed magnetopause reconnection. The ESR observations also reveal the nature of the structured and variable polar ionosphere produced by the structured and time-varying precipitation and flow

    End stage renal disease and survival in people with diabetes:a national database linkage study

    Get PDF
    © The Author 2014. Published by Oxford University Press on behalf of the Association of Physicians. Funding This work was supported by the Wellcome Trust through the Scottish Health Informatics Programme (SHIP). The SHIP is collaboration between the Universities of Aberdeen, Dundee, Edinburgh, Glasgow and St Andrews and the Information Services Division of National Health Service National Service Scotland. Funding for diabetes register linkage and data extraction was provided by the Chief Scientist’s Office of the Scottish Government. The Scottish Diabetes Research Network receives financial support from National Health Services Research Scotland. The Scottish Renal Registry is funded by the Information Services Division of National Health Service National Services Scotland but relies heavily on the goodwill of the contributing renal units who spent a large amount time working with Scottish Renal Registry staff to ensure that the data held within the register are accurate and complete.Peer reviewedPublisher PD

    Measurement of the Temperature Dependence of the Casimir-Polder Force

    Get PDF
    We report on the first measurement of a temperature dependence of the Casimir-Polder force. This measurement was obtained by positioning a nearly pure 87-Rb Bose-Einstein condensate a few microns from a dielectric substrate and exciting its dipole oscillation. Changes in the collective oscillation frequency of the magnetically trapped atoms result from spatial variations in the surface-atom force. In our experiment, the dielectric substrate is heated up to 605 K, while the surrounding environment is kept near room temperature (310 K). The effect of the Casimir-Polder force is measured to be nearly 3 times larger for a 605 K substrate than for a room-temperature substrate, showing a clear temperature dependence in agreement with theory.Comment: 4 pages, 4 figures, published in Physical Review Letter

    An Efficient Algorithm for Enumerating Chordless Cycles and Chordless Paths

    Full text link
    A chordless cycle (induced cycle) CC of a graph is a cycle without any chord, meaning that there is no edge outside the cycle connecting two vertices of the cycle. A chordless path is defined similarly. In this paper, we consider the problems of enumerating chordless cycles/paths of a given graph G=(V,E),G=(V,E), and propose algorithms taking O(E)O(|E|) time for each chordless cycle/path. In the existing studies, the problems had not been deeply studied in the theoretical computer science area, and no output polynomial time algorithm has been proposed. Our experiments showed that the computation time of our algorithms is constant per chordless cycle/path for non-dense random graphs and real-world graphs. They also show that the number of chordless cycles is much smaller than the number of cycles. We applied the algorithm to prediction of NMR (Nuclear Magnetic Resonance) spectra, and increased the accuracy of the prediction
    corecore