4,958 research outputs found

    Correspondence

    Get PDF

    Observing Spontaneous Strong Parity Violation in Heavy-Ion Collisions

    Get PDF
    We discuss the problem of observing spontaneous parity and CP violation in collision systems. We discuss and propose observables which may be used in heavy-ion collisions to observe such violations, as well as event-by-event methods to analyze the data. Finally, we discuss simple monte-carlo models of these CP violating effects which we have used to develop our techniques and from which we derive rough estimates of sensitivities to signals which may be seen at RHIC

    Beyond Outerplanarity

    Full text link
    We study straight-line drawings of graphs where the vertices are placed in convex position in the plane, i.e., convex drawings. We consider two families of graph classes with nice convex drawings: outer kk-planar graphs, where each edge is crossed by at most kk other edges; and, outer kk-quasi-planar graphs where no kk edges can mutually cross. We show that the outer kk-planar graphs are (⌊4k+1⌋+1)(\lfloor\sqrt{4k+1}\rfloor+1)-degenerate, and consequently that every outer kk-planar graph can be (⌊4k+1⌋+2)(\lfloor\sqrt{4k+1}\rfloor+2)-colored, and this bound is tight. We further show that every outer kk-planar graph has a balanced separator of size O(k)O(k). This implies that every outer kk-planar graph has treewidth O(k)O(k). For fixed kk, these small balanced separators allow us to obtain a simple quasi-polynomial time algorithm to test whether a given graph is outer kk-planar, i.e., none of these recognition problems are NP-complete unless ETH fails. For the outer kk-quasi-planar graphs we prove that, unlike other beyond-planar graph classes, every edge-maximal nn-vertex outer kk-quasi planar graph has the same number of edges, namely 2(k−1)n−(2k−12)2(k-1)n - \binom{2k-1}{2}. We also construct planar 3-trees that are not outer 33-quasi-planar. Finally, we restrict outer kk-planar and outer kk-quasi-planar drawings to \emph{closed} drawings, where the vertex sequence on the boundary is a cycle in the graph. For each kk, we express closed outer kk-planarity and \emph{closed outer kk-quasi-planarity} in extended monadic second-order logic. Thus, closed outer kk-planarity is linear-time testable by Courcelle's Theorem.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Metals and Bacteria Partitioning to Various Size Particles in Ballona Creek Storm Water Runoff

    Get PDF
    Many storm water best management practice (BMP) devices function primarily by capturing particulate matter to take advantage of the well‐documented association between storm water particles and pollutants. The hydrodynamic separation or settling methods used by most BMP devices are most effective at capturing medium to large particles; however, these may not be the most predominant particles associated with urban runoff. The present study examined particle size distribution in storm water runoff from an urban watershed in southern California and investigated the pollutant–particle associations of metals (Cu, Pb, Ni, and Zn) and bacteria (enterococci and Escherichia coli). During small storm events (≀0.7 cm rain), the highest concentration of pollutants were associated with a \u3c6‐”m filter fraction, which accounted for 70% of the per storm contaminant mass but made up more than 20% of the total particle mass. The pollutant–particle association changed with storm size. Most pollutant mass was associated with \u3e35 ”m size particles during a 5‐cm rain event. These results suggest that much of the contaminant load in storm water runoff will not be captured by the most commonly used BMP devices, because most of these devices (e.g., hydrodynamic separators) are unable to capture particles smaller than 75 ”m

    A Spectroscopic Binary at the M/L Transition

    Full text link
    We report the discovery of a single-lined spectroscopic binary with an Ultra Cool Dwarf (UCD) primary with a spectral type between M8 and L0.5. This system was discovered during the course of an ongoing survey to monitor L dwarfs for radial velocity variations and is the first known small separation (a<1 AU) spectroscopic binary among dwarfs at the M/L transition. Based on radial-velocity measurements with a typical precision of 300 m/s we estimate the orbital parameters of this system to be P=246.73+/-0.49 d, a1 sin(i)=0.159+/-0.003 AU, M2 sin(i)=0.2062 (M1+M2)^(2/3)+/-0.0034 M_{\sun}. Assuming a primary mass of M1=0.08M_{\sun} (based on spectral type), we estimate the secondary minimum mass to be M2 sin(i)=0.054 M_{\sun}. With future photometric, spectroscopic, and interferometric observations it may be possible to determine the dynamical masses of both components directly, making this system one of the best characterized UCD binaries known.Comment: 11 pages, 2 figures. Accepted for publication in ApJ Letter

    CIMSS FIRE research activities

    Get PDF
    An overview of the Cooperative Institute for Meteorological Satellite Studies' FIRE research activities is presented. Emphasis is on the analysis of the High-Resolution Interferometer Sounder (HIS) made from the ER-2 as well as ground based measurements made by the Atmospheric Emitted Radiance Interferometer (AERI) prototype

    Cirrus cloud retrievals from HIS observations during FIRE 2

    Get PDF
    This paper presents retrieval methods applied to HIS observations during FIRE II and doubling/adding model developed to simulate high-spectral resolution infrared radiances in a cloudy atmosphere. The capabilities of the retrieval methods and sensitivity studies of high-altitude aircraft based observations to cloud microphysical structure are conducted with the model

    Precautionary Regulation in Europe and the United States: A Quantitative Comparison

    Get PDF
    Much attention has been addressed to the question of whether Europe or the United States adopts a more precautionary stance to the regulation of potential environmental, health, and safety risks. Some commentators suggest that Europe is more risk-averse and precautionary, whereas the US is seen as more risk-taking and optimistic about the prospects for new technology. Others suggest that the US is more precautionary because its regulatory process is more legalistic and adversarial, while Europe is more lax and corporatist in its regulations. The flip-flop hypothesis claims that the US was more precautionary than Europe in the 1970s and early 1980s, and that Europe has become more precautionary since then. We examine the levels and trends in regulation of environmental, health, and safety risks since 1970. Unlike previous research, which has studied only a small set of prominent cases selected non-randomly, we develop a comprehensive list of almost 3,000 risks and code the relative stringency of regulation in Europe and the US for each of 100 risks randomly selected from that list for each year from 1970 through 2004. Our results suggest that: (a) averaging over risks, there is no significant difference in relative precaution over the period, (b) weakly consistent with the flip-flop hypothesis, there is some evidence of a modest shift toward greater relative precaution of European regulation since about 1990, although (c) there is a diversity of trends across risks, of which the most common is no change in relative precaution (including cases where Europe and the US are equally precautionary and where Europe or the US has been consistently more precautionary). The overall finding is of a mixed and diverse pattern of relative transatlantic precaution over the period

    Single Electron Elliptic Flow Measurements in Au+Au Collisions from STAR

    Full text link
    Recent measurements of elliptic flow (v_2) and the nuclear modification factor (R_{CP}) of strange mesons and baryons in the intermediate p_T domain in Au+Au collisions demonstrate a scaling with the number of constituent-quarks. This suggests hadron production via quark coalescence from a thermalized parton system. Measuring the elliptic flow of charmed hadrons, which are believed to originate rather from fragmentation than from coalescence processes, might therefore change our view of hadron production in heavy ion collisions. While direct v_2 measurements of charmed hadrons are currently not available, single electron v_2 at sufficiently high transverse momenta can serve as a substitute. At transverse momenta above 2 GeV/c, the production of single electrons from non-photonic sources is expected to be dominated by the decay of charmed hadrons. Simulations show a strong correlation between the flow of the charmed hadrons and the flow of their decay electrons for p_T > 2 GeV/c. We will present preliminary STAR results from our single electron v_2 measurements from Au+Au collisions at RHIC energies.Comment: 10 pages, 7 figures Proceedings of the Hot Quarks 2004 Conference, July 18-24 2004, Taos Valley, New Mexico, USA to be published in Journal of Physics
    • 

    corecore