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Abstract—Many storm water best management practice (BMP) devices function primarily by capturing particulate matter to take
advantage of the well-documented association between storm water particles and pollutants. The hydrodynamic separation or settling
methods used by most BMP devices are most effective at capturing medium to large particles; however, these may not be the most
predominant particles associated with urban runoff. The present study examined particle size distribution in storm water runoff from an
urban watershed in southern California and investigated the pollutant—particle associations of metals (Cu, Pb, Ni, and Zn) and bacteria
(enterococci and Escherichia coli). During small storm events (<0.7 cm rain), the highest concentration of pollutants were associated
with a <6-pm filter fraction, which accounted for 70% of the per storm contaminant mass but made up more than 20% of the total
particle mass. The pollutant—particle association changed with storm size. Most pollutant mass was associated with >35 um size
particles during a 5-cm rain event. These results suggest that much of the contaminant load in storm water runoff will not be captured by
the most commonly used BMP devices, because most of these devices (e.g., hydrodynamic separators) are unable to capture particles

smaller than 75 pm. Environ. Toxicol. Chem. 2013;32:320-328. © 2012 SETAC

Keywords—Particle size distribution Storm water

INTRODUCTION

Pollutants in storm water are associated mainly with sus-
pended particles, which act as the transport vector to down-
stream areas [1-4]. Previous studies of runoff from parking lot
and road surfaces demonstrated that the majority of pollutants
are associated with fine particles, typically smaller than 50 pm
[5,6]. These fine particles have a propensity to settle down-
stream and accumulate in bays and estuaries, where they may
contribute to sediment contamination [7,8].

In many urban watersheds, such as the Ballona Creek water-
shed, pollutants in storm water runoff and in downstream bays
and estuaries have resulted in water bodies being listed as
impaired under Section 303(d) of the Clean Water Act. These
water bodies are then subject to total maximum daily load
requirements to reduce loading of urban-associated contami-
nants such as metals, bacteria, and organic contaminants. The
most common approaches to meeting total maximum daily load
requirements for urban storm water are through installation of
best management practices (BMPs) designed to capture or treat
pollutants before they are discharged to streams or receiving
waters [9]. The mechanism used by most BMPs is settling or
filtering of storm water particles as a means of reducing loading
of the attached pollutants [10]. Consequently, BMP effective-
ness is a function of the efficiency of particle capture relative
to the concentration of bound pollutants in the storm water
runoff.
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Laser in situ scattering and transmissometry BMPs

The effectiveness of BMPs at pollutant removal is compli-
cated by the fact that the timing of runoff of pollutants,
including metals and bacteria during storms, is not static.
Pollutant concentrations and loads are typically higher during
the early portion of storms and during the earlier storms of the
season [11-13]. Although most pollutants remain particle bound
throughout most storms [11], more recent research has shown
that the ratio of particulate to dissolved concentration varies
over the course of storms as a function of storm size, antecedent
conditions, and surrounding land use [14]. These factors can
further affect BMP performance and concentration of pollutants
delivered to downstream water bodies.

Management of storm water runoff through BMPs can be
improved by an increased understanding of the dynamic rela-
tionship between pollutants and particles. Because fine particles
predominate in storm water runoff, it is important to move
beyond pollutant characterization as either particle-bound or
dissolved. Knowing the relationship between pollutants and
specific particle sizes over the course of storms, and between
different storms within a season, will allow managers to more
effectively target BMP design and implementation. Although
these relationships have been described well in runoff from
developed surfaces [2,3], less is known about how the parti-
tioning between pollutants and various size particles changes
over the course of storms and seasons sampled from urban flood
control channels that integrate runoff from a variety of land
surfaces.

The goal of the present study was to improve the under-
standing of pollutant—particle relationships in urban storm water
runoff. The study focused on answering the following three
questions, based on data collected from the Ballona Creek
watershed: (1) What is the pollutant—particle association in urban
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storm water? (2) Does the association change over the course of
a storm? (3) Does the association change among storms?

METHODS
Study area

Sampling occurred in the Ballona Creek watershed, located
in western Los Angeles County, California, USA (Fig. 1). The
Ballona Creek watershed above the sampling point drains
230 km?® and is approximately 85% developed, representing
a typical urbanized watershed for southern California [15].
Runoff from the upper half of the watershed is conveyed
through a series of underground storm drains, discharging to
a concrete-lined channel that ultimately flows to Santa Monica
Bay, Santa Monica, California, USA. Sampling occurred from
the Sepulveda Boulevard Bridge, located 7.2 km downstream
from where Ballona Creek becomes an open channel, 6.8 km
upstream from the mouth, and 2.0 km upstream above the zone
of tidal influence. Average annual rainfall in the watershed
ranges from 340 to 530 mm, with the majority of storms
occurring from January to March.
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Sample collection

Three types of measurements were made during a series of
storm events over four storm seasons. Particle size distribution
was measured over the course of six storms, trace metals were
measured in four storms, bound to various particle size frac-
tions, and bacteria were measured in the particle-bound phases
during eight storms.

Samples for metals and bacteria were taken directly from the
creek, using a United States Geological Survey depth-integrated
sampler or by collecting water pumped from the creek. For the
pumped samples, storm water from Ballona Creek was pumped
vertically 10 m from the concrete channel bed to the top of the
bridge over the channel. Water was pumped through Teflon or
silicon tubing (9.5 mm inside diameter) attached to a 25.4-mm
angle iron bolted to the concrete channel bottom. Samples were
pumped using a Masterflex I/P 77410-10 peristaltic pump with
two heads in parallel and Masterflex Norprene I/P 73 tubing.
Creek water was transported to the bridge and through a filter
with 480-pm mesh sump filter (Cole-Parmer Low-cost In-line
Strainer System). The bowl and mesh of the sump filter were
manually switched out approximately every 15 minutes or when

8 Kilometers

T

3 r/ V4

Fig. 1. Sampling location within the Ballona Creek watershed in southern California, USA. The shaded area represents the extent of the watershed. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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they became clogged with leaves, small sticks, trash, or other
debris. Pumping rates were maintained at > 3 L/min (0.8 m/s) to
ensure no particle settling in the tubing, based on validation
studies conducted by Brown et al. [16]. Between 3 and 10
samples were collected for each storm, with a greater number of
samples collected during the earlier storms in the present study.
Samples were collected throughout each storm, often with a
higher sampling frequency at the beginning of each event to
characterize any first-flush response in metal or bacteria con-
centrations. Samples were held on ice and transported to the
laboratory for filtration within 1h of collection to minimize
flocculation and settling.

Particle size distribution was continuously monitored
throughout most storms using the laser in situ scattering and
transmissometry device (Sequoia Scientific) as described by
Brown et al. [16]. Laser refractometry produces particle density
estimates by shining a laser through a parcel of water to
calculate particle size distribution based on the amount of
scatter induced by the particles. The method relies on assump-
tions about particle shape and density, and requires that water
samples have sufficient transmissivity for penetration by the
laser beam [17]. Although this technique has not been widely
used to measure particle size distribution in storm water, Brown
et al. [16] demonstrated that with appropriate field procedures,
in situ laser refractometry produces particle density estimates
and size distribution estimates that are comparable to laboratory
methods.

Water was pumped from the creek, as described, and run
through the laser in situ scattering and transmissometry to
continually sample storm water at 1-min intervals. Technical
difficulties with the pump setup prevented us from character-
izing particle distribution for at least a portion of each storm. As
such, we were able to characterize the particle size distribution
during the peak flow for only six of the eight storm events
sampled. Nevertheless, we characterized the distribution of
particle sizes during the initial portion (i.e., rising limb of
the hydrograph) of all storms, thereby allowing us to assess
the portion of the hydrograph associated with first flush
responses.

Flow data were obtained from the U.S. Army Corps of
Engineers for the Ballona Creek flow gauge (http://www.spl.
usace.army.mil/cgi-bin/cgiwrap/zinger/slLatestBasin.cgi?lacda +
stage), located near the sample collection site.

Laboratory analysis

Fecal indicator bacteria and metals associated with various
size fractions were measured by filtering storm water through a
series of progressively smaller Nitex filters manufactured by
Sefar (Table 1). Filter sizes ranged from 0.45 to 200 wm for the
first storm, but because the measured distribution of metals and
bacteria from early storms was mostly in the smaller fractions,
the range was reduced to 6 and 35 um for the last five storm
events. Because of the difficulty in extracting bound particles
from the filters, metals and bacteria were measured in the filtrate
that passed through each filter. The constituent fraction asso-
ciated with each size fraction was estimated as the difference in
concentration between filtrate from successively smaller filters.
Before filtering, concentrations were measured in each sample
of raw runoff. The sample then was passed through the first filter
in the series using a sterile 47-mm filtering funnel vacuum
system. The filtrate was sampled using three serial dilutions,
beginning by placing 1 ml filtrate in 99 ml sterile dilution water
to produce a 0.01 dilution, then repeating the same steps to yield
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0.001 and 0.0001 dilutions. The remaining filtrate then was
passed through the next filter in the series.

Filtrate aliquots were tested for Escherichia coli, using
Colilert-18 and for enterococci using Enterolert (IDEXX)
[18]. The filtrate samples for total metals were acidified with
nitric acid and analyzed by inductively coupled plasma mass
spectrometry, using U.S. Environmental Protection Agency
(U.S. EPA) method 200.8 m. The metals analyzed included
Cu, Pb, Ni, and Zn (reporting levels = 0.8, 0.1, 0.5, and 0.5 pg/L,
respectively).

Event flow-weighted mean concentrations (EMCs) were
calculated for the metals and bacteria data. Using only those
samples for a single storm, the EMC was calculated according
to the following equation:

n
1 Ci X F;

EMC = 72’*1,1 —

Zi:l Fi
where EMC was event flow-weighted mean concentration for a
particular storm, C; was individual runoff sample concentration
of ith sample, F; was instantaneous flow at the time of
ith sample, and n was number of samples per event.

Data analysis

To more readily compare data among the various filtration
size classes used during different storms in the present study, the
metals and bacteria data were consolidated to three size ranges:
<6 um, 6 to 35 wm, and >35 pwm.

Differences in the proportions of total particle mass repre-
sented by the different filter fractions were assessed using the
Kruskal-Wallis analysis of variance on ranks, followed by the
Student-Newman-Keuls multiple comparison procedure to
identify which fractions were significantly different. Signifi-
cance was determined at oo =0.05.

RESULTS
Particle size distribution

The dominant particle size varied over the course of each
storm, with fine particles often dominating during the early part
of the storm and the proportion of coarser particles increasing
later in the storm. For most events, there was an increase in the
silt/clay fraction (<63 wm, Wentworth scale [19]) as storm
water began to flow in the channel, with a peak in concentration
that occurred before the peak in storm flow. The peak concen-
trations of the silt/clay fraction varied among storms by a factor

Table 1. Filter sizes (um) used during the storms monitored for bacteria
and metals bound to particulates®

Bacteria filter sizes (um) Metals filter sizes (um)

Storm
date 0.45 15 6 35 125 200 Raw 045 1 5 6 35 125 200 Total

1/14/2006 x X x
3/3/2006 X X
3/28/2006 X X
2/3/2008

12/15/2008

2/5/2009

1/17/2010

2/19/2010

X X
X
X

>

Fo o T B B B B B
Mo MR

Fo I B B
E I B B R B A
>
>
tal
MO M XK

#Because of the measured distribution of bacteria in the early storms and the
difficulty of passing storm water through the smallest filter sizes, the range
was reduced to 6 and 35 wm for the last storm events. “Raw” indicates
samples that were not filtered before analysis.
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of 23, ranging from 60 to 1,356 pl/L (measured as particle
volume/volume solution by the particle size analyzer). No
significant relationship was found between the silt/clay peak
concentration and preceding volume of storm water (p = 1.00,
Spearman rank correlation), flow velocity (p = 1.00), volume of
storm water before the peak in storm flow (p =0.95), or number
of dry antecedent days (p = 0.35). Because the silt/clay fraction
was the predominant particle size class for the first 50 to 75% of
the storm volumes, we focused on this size class for the
subsequent analysis of pollutant partitioning.

Distribution of contaminants among particle sizes

Most trace metals, with the exception of Pb, were associated
with fine particles. Copper, Ni, and Zn were most strongly
associated with the <6-pm fraction (Fig. 2). For example, 51%
of the mean Cu EMC was associated with the <6-wm fraction,
33% associated with the >35-pm fraction, and 16% associated
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with the 6- to 35-pm fraction. In contrast, concentrations of Pb
were slightly greater in the >35-um filter size fraction, with
44% associated with the >35-wm fraction, compared with 33%
associated with the <6-pm fraction and 23% associated with
the 6- to 35-pum fraction.

Likewise, bacteria tended to be associated with the <6-pwm
fraction. Approximately 50% of the Enterococcus concentra-
tion and 63% of the E. coli concentration were associated with
this smallest filter fraction (Fig. 2). The EMCs varied; the
proportion of enterococci associated with the <6-pwm fraction
ranged from 26 to 78% of the EMCs among the eight storm
events, whereas the proportion of E. coli associated with this
fraction ranged from 45 to 82%.

Although the majority of the metals and bacteria concen-
trations were associated with the <6-pwm fraction, this particle
size fraction represented a significantly lower proportion of the
total mass of storm water particles (H=150.39, p < 0.01). Less

50 Pb - 50
g T
»
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c 40 | F40 o
@ »
3 +
o 30 F30 S
=2 3
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8 20 - L2035,
@ 2
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2 104 L0 2
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Fig. 2. Proportion of flow-weighted event mean concentration (EMC) associated with the various filter fractions (first three bars in each graph), and the overall
EMC (fourth bar). The data represent the mean of the EMCs from the four (metals) or eight (bacteria) storm events. The vertical line above each bar represents the
standard error (SE). The horizontal slash on the fourth bar indicates the water quality standard used for comparison.
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Fig. 3. Association of metals and bacteria with the relative amounts of particles in storm water samples. Data were pooled over four storm events for metals and
eight events for bacteria. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

than 25% of the total particle concentration was represented
by the <6 um particles (Fig. 3). In contrast, the 6- to 35-pum
fraction made up approximately 39% of the total particle
mass (on average), whereas the >35-um fraction made up
approximately 50%.

Within-storm variability

Metal concentrations were generally highest during the early
portion of storms across all particle size classes. The highest
concentrations typically occurred in samples collected before
the peak in storm flow and decreased toward the recessional end
of the hydrograph. The average ratio in concentrations of total
metals between the first and last samples was 2.9 for Cu, 2.3 for
Ni, and 1.8 for Zn. For Pb, however, no difference was found
in concentrations between the first and last samples collected.
Whereas concentrations of Cu, Ni, and Zn tended to be highest

at the beginning portions of storms, the peak in metal mass
discharge coincided with the peak in flow rate for all particle
size categories (Fig. 4). This trend was consistent for each of the
metals, including Pb.

Unlike metals, no consistent trend was found in bacteria
concentrations over the course of the storms. Concentrations of
enterococci and E. coli did not exhibit a first flush-like response,
and bacteria concentrations appeared to be independent of
storm water flow volume at the time of sampling.

Like metals, the peak in bacteria (most probable number)
discharge coincided with the peak in storm water flow rate
(Fig. 4). This pattern was consistent for both enterococci and
E. coli. The bacterial discharge associated with the individual
fractions generally exhibited this same pattern.

The pollutant—particle association was not always consistent
within each storm. Cu mass discharge was consistently asso-
ciated with the <6-pm fraction throughout storms with peak
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Fig. 4. Metal and bacteria mass discharge distributed among the three filter fractions, relative to storm flow rate. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

flow rates of less than 50 cm/s but alternated between the <6-pm,
6- to 35-pum, and >35-um fractions for storms with peak flow
rates of more than 200 cm/s (Fig. 4). Enterococci usually had a
greater association with the <6-wm fraction throughout storms
that had flow rates of less than 60 cm/s, but this trend was not
consistent (Fig. 4); enterococci alternated between the <6-pm
and >35-wm fractions over the course of the storm that had the
lowest peak in flow rate (15 cm/s). Escherichia coli discharge
tended to have a consistently high association with the <6-pum
fraction throughout the course of most events (Fig. 4).

Among-storm variability

The association of metals with particle size appeared to be
influenced by storm size. Storms with lower total flow volumes
(<4.7x10° m®, <0.7cm rain event) had relatively lower
masses of metals discharged, and these metals had a greater
association with the <6-pm filter fractions (Fig. 5). At a storm
volume of 1.7 x 10° m?, the distribution of metals among the
filter fractions was approximately equal. The largest storm in
the present study (4.0 x 10° m®, 4.8cm rain event) had the

greatest metal mass discharge, and the metals tended to have a
higher association with the >35-pm filter fraction.

Changes in the bacteria—particle association with storm size
appeared to be indicator dependent (Fig. 5). Similar to metals,
enterococci had a greater association with larger particle frac-
tions as storm size increased. For storms smaller than
1x10° m®, a greater proportion of the bacteria discharge
was associated with the <6-pm fraction, but the association
changed to the larger-sized particles as storm size increased.
In contrast, E. coli was associated with the <6-pm fraction
throughout the range of storm sizes sampled.

DISCUSSION

In the Ballona Creek watershed, most storm water metals
and bacteria were associated with the <6-wm filter fraction at
lower storm volumes, but the association shifted to larger
particles with larger storms. Storm water volumes in Ballona
Creek between 1987 and 1998 indicate that 63% of the storms
were small (<700,000 m> daily flow volume), with only 6% of
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the events having flow volumes equal to or greater than the
largest storms measured in the present study (>4,000,000 m’
daily flow volume). Therefore, most pollutants are expected to
be associated with the <6-pm fraction for most events. How-
ever, because larger storms discharge greater amounts of con-
taminants, the distribution of metals and enterococci is expected
to be much more comparable among the particle size ranges on
an annual mass discharge basis. Using the distribution of metals
identified in the present study with the storm volumes measured
between 1987 and 1998, the mass of Cu discharged would have
been very similar between the <6-pm (36% of the mass) and
>35-pum size fractions (also 36% of the mass) over this 12-year
period. Likewise, the distribution was similar for Ni (34% of the
mass associated with the <6-pm fraction, 37% associated with
the >35-pwm fraction), but it is estimated that a greater mass
discharge would have been associated with the >35-pm frac-
tion for Pb and Zn. For Pb, 19% of the mass was estimated to be
associated with the <6-um fraction, compared with 44%
associated with the >35-um fraction. For Zn, the mass dis-
tribution was estimated to be 34% associated with the <6-pm
fraction and 42% associated with the >35-pm particles over a
12-year time scale.

Although the sampling location for the present study was
near the bottom of the watershed, and therefore included storm
water runoff from a mixture of land uses (residential, commer-

cial, and transportation), the results in the present study were
similar to those from studies that focused solely on highway
runoff, collected at the source of the runoff. For example, Li
et al. [20] observed that particles <10 pm make up less than
20% of the total particle mass in storm water runoff from
highways in southern California, which was similar to our
observations. Li et al. [20] also observed that the highest particle
concentrations occurred within the first hour of runoff and
decreased rapidly thereafter, which is similar to the pattern
measured in the runoff at Ballona Creek in the present study.
Sansalone et al. [21] similarly observed that metal partitioning
between particle and dissolved phase was related to rainfall
and storm flow intensity in runoff from urban roadways. In
the present study of the runoff from an entire watershed, we
observed that contaminant distribution among particle size was
related to storm size, with greater association with larger
particles during larger storms.

Whether most metals were associated with particles, or
whether they were freely dissolved (conventionally defined
as <0.45 pm), is unclear. Sansalone et al. [21] determined that
for metals in highway runoff, the majority of Cu, Ni, and Zn
were dissolved, but Pb was equally split between the dissolved
and particle-bound fractions. We found a similar trend, with Cu,
Ni, and Zn associated with the <6-pm filter fraction and Pb
concentrations divided between the <6-pm and >35-pm filter
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sizes in storm water from Ballona Creek. Data from the one
storm event in which we measured both total and dissolved
metals indicate that approximately 18% of the Cu, Ni, and Zn
and 3% of the Pb were in the dissolved form. However, these
data are from the largest storm event sampled. Because we
observed a greater association of metals with larger particles as
storm size increased, the proportion of metals in the dissolved
phase during a smaller storm event may have been different.
The distribution of metals between the particle-bound and
unbound fractions can be influenced by a variety of mecha-
nisms, which were not investigated in the present study.
Hydrous Fe oxide has been shown to be a factor controlling
metal partitioning in urban runoff [22] and could have seques-
tered the metals in the <6-pm fraction. Previous studies have
also shown that metal partitioning can be influenced by the
organic carbon content of the dissolved phase [11,23], which
would be useful to measure in future investigations. Adsorption
to bacteria is another possible fate of the metals. Fein et al. [24]
determined that carboxyl and phosphate functional groups
within bacteria cell walls adsorb trace metals under the pH
conditions of most natural and contaminated aqueous systems.

Most bacteria were associated with the <6-pm filter frac-
tion, but it is unclear whether the bacteria were bound to the
smallest particle sizes or were free floating. Krometis et al. [25]
determined that approximately 60% of enterococci and E. coli
were associated with the suspended fraction of runoff from low-
density residential and institutional (university) drainage areas.
Jeng et al. [8] determined that 91% of enterococci and 78% of
E. coli were not associated with particles in storm water. Of
those organisms that were attached to particles in that study,
most of the enterococci were associated with particles between
10 and 30 pm, whereas E. coli tended to attach to particles over
a wider range in size (0.45-30 pwm). Therefore, bacteria in the
<6-pm fraction in Ballona Creek may have been freely sus-
pended, rather than particle bound, and may have been asso-
ciated with dislodged biofilms coating wetted areas of storm
drain pipes, as suggested by Skinner et al. [26].

To evaluate the potential for toxicity in the receiving water,
the total metal EMC values were compared with California
Ocean Plan thresholds [27]. Marine receiving water standards
were used for the evaluations instead of the freshwater stand-
ards, because Ballona Creek is not expected to have much water
contact recreation compared with the nearby coastal environ-
ment, especially during storm events. Daily maximum thresh-
olds were used for comparison: Cu=12 ng/L, Pb=8 pg/L,
Ni=20png/L, Zn=280 wg/L. Each of the storms had metal
concentrations that exceeded toxicity threshold values. All of
the Cu, Pb, and Zn EMCs exceeded the daily maximum limits.
Copper and Pb EMC values exceeded these thresholds by up to
a factor of 8, whereas Zn EMCs exceeded by up to a factor of 5.
Nickel EMC values did not exceed the threshold in any of the
storms sampled.

The bacteria values were compared with water quality
standards established to protect water contact recreation in
coastal waters [27]. The EMCs for total enterococci were
compared with the enterococci 30-d mean standard (35 most
probable number/100 ml), whereas total E. coli was compared
with the fecal coliform 30-d mean standard (200 most probable
number/100 ml). Objectives do not currently exist for E. coli in
the marine environment; however, because E. coli makes up a
proportion of the total fecal coliforms, the fecal coliform
objective would be a conservative threshold for comparison.
Bacteria concentrations exceeded the water quality objectives
during each of the storm events sampled. Enterococci EMCs
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exceeded water contact objectives by up to a factor of 2,750. For
E. coli, EMCs exceeded the water contact objective by up to a
factor of 179.

Increasing desire has been expressed to remove contami-
nants in runoff, using BMPs before the storm water reaches its
receiving water. Structural BMPs (including hydrodynamic
settling chambers) have been installed at inlets to Ballona
Creek to capture particulates, trash, and debris [28]. However,
most of these devices are able to capture only the larger sand
particles (>250 pm), without removing contaminants that are
either dissolved or bound to small particulates [29]. In the
present study, more than 50% of the Cu, Ni, Zn, Enterococcus,
and E. coli were associated with filter size fractions that would
not have been captured by these devices. Studies of metals
accumulation in urban soils have shown that trace metals
primarily accumulate in clay, fine silt, and very fine sand
fractions before washoff or resuspension as dust [2,30]. Alter-
native structural BMPs, including media filters, have been
developed to capture dissolved contaminants. Using these
devices during the initial portions of storms would maximize
contaminant removal efficiency, because the highest concen-
trations of metals in the present study were found in the early
part of the hydrograph. Storm size should also be considered
because metals and bacteria tended to be associated with larger
particle sizes during the larger storm events.
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