3,488 research outputs found

    Impact of elite soccer coaching change on team performance according to coach- and club-related variables

    Get PDF
    A coaching change is an extreme, but frequently occurring phenomenon in elite soccer with its impact on team success debatable. The aim of the current study was twofold: (i) to compare team's performance when coached by new and old coaches; and (ii) to investigate the impact of a coaching change on team's performance according to coach- and club-related factors. All in-season coaching changes from the 2010-11 to 2017-18 seasons within the Spanish, French, English, German and Italian professional leagues were examined. Team performance was assessed as points awarded from match outcome over 1-20 matches prior to and following the coaching change. Four independent variables (coach's experience, team's budget, whether the coach had been an elite former player or not, and whether the coach was a novice or not) were included into linear regression modelling. The main results showed that team's short-term performance was improved significantly with a change to a new coach with this impact declining in the longer term (> 10 matches). Specifically, the number of points (1.15-1.32 vs. 0.37-1.03, p < 0.05) and the moving average of points (1.19-1.31 vs. 0.37-1.04, p < 0.05) awarded per match were significantly greater after the coaching change. Further, the winning effect due to the new coach was independent of coach-related factors such as coaching experience or the new coach being a former elite player. A critical organisational decision to change coaches may provide an essential stimulus for future team success in elite soccer

    Multifractal detrended fluctuation analysis of rainfall time series in the Guadeloupe archipelago

    Full text link
    Due to the vulnerability of the Caribbean islands to the climate change issue, it is important to investigate the behavior of rainfall. In addition, the soil of the French West Indies Islands has been contaminated by an insecticide (Chlordecone) whose decontamination is mainly done by drainage water. Thus, it is crucial to investigate the fluctuations of rainfall in these complex environments. In this study, 19 daily rainfall series recorded in different stations of Guadeloupe archipelago from 2005 to 2014 were analyzed with the multifractal detrended fluctuation analysis (MF-DFA) method. The aim of this work is to characterize the long-range correlations and multifractal properties of the time series and to find geographical patterns over the three most important islands. This is the first study that addresses the analysis of multifractal properties of rainfall series in the Caribbean islands. This region is typically characterized by the almost constant influence of the trade winds and a high exposure to changes in the general atmospheric circulation. 12 stations exhibit two different power-law scaling regions in rainfall series, with distinct long-range correlations and multifractal properties for large and small scales. On the contrary, the rest of stations only show a single region of scales for relatively small scales. Hurst exponents reveal persistent long-range correlations. In the most eastern analyzed areas, larger scales exhibit higher persistence than smaller scales, which suggests a relationship between persistence and the highest exposure to the trade winds. Stronger conclusions can be drawn from multifractal spectra, which indicate that most rainfall series have a multifractal nature with higher complexity and degree of multifractality at the smallest scales. Furthermore, a clear dependence of multifractal nature on the latitude is revealed.Comment: 43 pages. 11 figure

    Paper-based chromatic toxicity bioassay by analysis of bacterial ferricyanide reduction

    Get PDF
    Water quality assessment requires a continuous and strict analysis of samples to guarantee compliance with established standards. Nowadays, the increasing number of pollutants and their synergistic effects lead to the development general toxicity bioassays capable to analyse water pollution as a whole. Current general toxicity methods, e.g. Microtox®, rely on long operation protocols, the use of complex and expensive instrumentation and sample pre-treatment, which should be transported to the laboratory for analysis. These requirements delay sample analysis and hence, the response to avoid an environmental catastrophe. In an attempt to solve it, a fast (15 min) and low-cost toxicity bioassay based on the chromatic changes associated to bacterial ferricyanide reduction is here presented. E. coli cells (used as model bacteria) were stably trapped on low-cost paper matrices (cellulose-based paper discs, PDs) and remained viable for long times (1 month at -20 °C). Apart from bacterial carrier, paper matrices also acted as a fluidic element, allowing fluid management without the need of external pumps. Bioassay evaluation was performed using copper as model toxic agent. Chromatic changes associated to bacterial ferricyanide reduction were determined by three different transduction methods, i.e. (i) optical reflectometry (as reference method), (ii) image analysis and (iii) visual inspection. In all cases, bioassay results (in terms of half maximal effective concentrations, EC50) were in agreement with already reported data, confirming the good performance of the bioassay. The validation of the bioassay was performed by analysis of real samples from natural sources, which were analysed and compared with a reference method (i.e. Microtox). Obtained results showed agreement for about 70% of toxic samples and 80% of non-toxic samples, which may validate the use of this simple and quick protocol in the determination of general toxicity. The minimum instrumentation requirements and the simplicity of the bioassay open the possibility of in-situ water toxicity assessment with a fast and low-cost protocolPostprint (author's final draft

    Evaluation of native microalgae from Tunisia using the pulse-amplitude-modulation measurement of chlorophyll fluorescence and a performance study in semi-continuous mode for biofuel production

    Get PDF
    Background: Microalgae are attracting much attention as a promising feedstock for renewable energy production, while simultaneously providing environmental benefits. So far, comparison studies for microalgae selection for this purpose were mainly based on data obtained from batch cultures, where the lipid content and the growth rate were the main selection parameters. The present study evaluates the performance of native microalgae strains in semi-continuous mode, considering the suitability of the algal-derived fatty acid composition and the saponifiable lipid productivity as selection criteria for microalgal fuel production. Evaluation of the photosynthetic performance and the robustness of the selected strain under outdoor conditions was conducted to assess its capability to grow and tolerate harsh environmental growth conditions. Results: In this study, five native microalgae strains from Tunisia (one freshwater and four marine strains) were isolated and evaluated as potential raw material to produce biofuel. Firstly, molecular identification of the strains was performed. Then, experiments in semi-continuous mode at different dilution rates were carried out. The local microalgae strains were characterized in terms of biomass and lipid productivity, in addition to protein content, and fatty acid profile, content and productivity. The marine strain Chlorella sp. showed, at 0.20 1/day dilution rate, lipid and biomass productivities of 35.10 mg/L day and 0.2 g/L day, respectively. Moreover, data from chlorophyll fluorescence measurements demonstrated the robustness of this strain as it tolerated extreme outdoor conditions including high (38 ° C) and low (10 ° C) temperature, and high irradiance (1600 µmol/m2 s). Conclusions: Selection of native microalgae allows identifying potential strains suitable for use in the production of biofuels. The selected strain Chlorella sp. demonstrated adequate performance to be scaled up to outdoor conditions. Although experiments were performed at laboratory conditions, the methodology used in this paper allows a robust evaluation of microalgae strains for potential market applications.This study was supported by the Marine Microalgae Biotechnology Group at the University of Almer'a (BIO 173) and the Campus de Excelencia Internacional Agroalimentario (ceiA3) within the joint framework of supervised theses between the University of Almeria, Spain and the University of Sfax, Tunisia.Scopu

    Neural network parametrization of spectral functions from hadronic tau decays and determination of QCD vacuum condensates

    Full text link
    The spectral function ρVA(s)\rho_{V-A}(s) is determined from ALEPH and OPAL data on hadronic tau decays using a neural network parametrization trained to retain the full experimental information on errors, their correlations and chiral sum rules: the DMO sum rule, the first and second Weinberg sum rules and the electromagnetic mass splitting of the pion sum rule. Nonperturbative QCD vacuum condensates can then be determined from finite energy sum rules. Our method minimizes all sources of theoretical uncertainty and bias producing an estimate of the condensates which is independent of the specific finite energy sum rule used. The results for the central values of the condensates O6O_6 and O8O_8 are both negative.Comment: 29 pages, 18 ps figure

    Therapeutic Exercise and Pain Neurophysiology Education in Female Patients with Fibromyalgia Syndrome: A Feasibility Study

    Get PDF
    Background: We compared the effects of therapeutic exercise (TE) combined with pain neurophysiology education (PNE) to those of TE in isolation on pain intensity, general fibromyalgia impact, mechanical pain sensitivity, pain catastrophizing, psychological distress and quality of life in women with fibromyalgia syndrome (FMS). Methods: A feasibility study with a 3 month follow-up was designed. Thirty-two patients with FMS were randomly assigned to PNE + TE group (n = 16) or to TE group (n = 16). Both groups received 30 sessions of TE (3 per week), and the PNE + TE group received eight face-to-face educational sessions. The measuring instruments used were the visual analogue scale, a standard pressure algometer, the Revised Fibromyalgia Impact Questionnaire, the Pain Catastrophizing Scale, the Hospital Anxiety and Depression Scale and the Health Assessment Questionnaire. Results: The PNE + TE group showed a statistically significant decrease on pain intensity compared to TE group at short term (p = 0.015). No between-groups differences were found for mechanical pain sensitivity, general fibromyalgia impact, pain catastrophizing, psychological distress or quality of life (p > 0.05). Conclusions: The combination of PNE and TE was more effective than TE for reducing pain intensity in the short-term. No differences were found for psychological distress, pain catastrophizing and quality of life after the intervention or at 3 months of follow-up

    Fusarium Mycotoxins and Metabolites that Modulate Their Production

    Get PDF
    The genus Fusarium is a group of fungi producing several types of toxins with toxicological effect in both humans and animals. Such fungi are commonly found in soils so it can contaminate various types of crops, preferably cereals, leading to significant economic losses. Relative humidity, storage temperature and various handling in cereales increase the possibility of contamination by Fusarium toxins. Cereals naturally have secondary metabolites that may help attenuate contamination by these toxins, but it is necessary to know strategies and mechanisms that generate inactivation mycotoxins. This chapter reviews relevant information about cereal mycotoxin contamination, as well as the production of cereal secondary metabolites as a strategy to reduce the possibility of mycotoxin contamination

    Nonsense-Mediated mRNA Decay Modulates Immune Receptor Levels to Regulate Plant Antibacterial Defense

    Get PDF
    SummaryNonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs. NMD impairment in Arabidopsis is linked to constitutive immune response activation and enhanced antibacterial resistance, but the underlying mechanisms are unknown. Here we show that NMD contributes to innate immunity in Arabidopsis by controlling the turnover of numerous TIR domain-containing, nucleotide-binding, leucine-rich repeat (TNL) immune receptor-encoding mRNAs. Autoimmunity resulting from NMD impairment depends on TNL signaling pathway components and can be triggered through deregulation of a single TNL gene, RPS6. Bacterial infection of plants causes host-programmed inhibition of NMD, leading to stabilization of NMD-regulated TNL transcripts. Conversely, constitutive NMD activity prevents TNL stabilization and impairs plant defense, demonstrating that host-regulated NMD contributes to disease resistance. Thus, NMD shapes plant innate immunity by controlling the threshold for activation of TNL resistance pathways

    The role of the land-surface model for climate change projections over the Iberian Peninsula

    Get PDF
    The importance of land-surface processes within Regional Climate Models for accurately reproducing the present-day climate is well known. However, their role when projecting future climate is still poorly reported. Hence, this work assesses the influence of the land-surface processes, particularly the contribution of soil moisture, when projecting future changes for temperature, precipitation and wind over a complex area as the Iberian Peninsula, which, in addition, shows great sensitivity to climate change. The main signals are found for the summer season, when the results indicate a strengthening in the increases projected for both mean temperature and temperature variability as a consequence of the future intensification of the positive soil moisture-temperature feedback. The more severe warming over the inner dry Iberian Peninsula further implies an intensification of the Iberian thermal low and, thus, of the cyclonic circulation. Furthermore, the land-atmosphere coupling leads to the projection of a wider future daily temperature range, since maximum temperatures are more affected than minima, a feature absent in non-coupled simulations. Regarding variability, the areas where the land-atmosphere coupling introduces larger changes are those where the reduction in the soil moisture content is more dramatic in future simulations, i.e., the so-called transitional zones. As regards precipitation, weaker positive signals for convective precipitation and more intense negative signals for non-convective precipitation are obtained as a result of the soil moisture-atmosphere interactions. These results highlight the crucial contribution of soil moisture to climate change projections and suggest its plausible key role for future projections of extreme events
    corecore