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Abstract

The genus Fusarium is a group of fungi producing several types of toxins with toxicologi-
cal effect in both humans and animals. Such fungi are commonly found in soils so it can 
contaminate various types of crops, preferably cereals, leading to significant economic 
losses. Relative humidity, storage temperature and various handling in cereales increase 
the possibility of contamination by Fusarium toxins. Cereals naturally have secondary 
metabolites that may help attenuate contamination by these toxins, but it is necessary 
to know strategies and mechanisms that generate inactivation mycotoxins. This chapter 
reviews relevant information about cereal mycotoxin contamination, as well as the pro-
duction of cereal secondary metabolites as a strategy to reduce the possibility of myco-
toxin contamination.
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1. Introduction

Mycotoxins produced by fungi of the genus Fusarium have the universal distribution, and eco-

nomic importance given their toxicity for animals, humans and plant pathogens, which infect 
and colonize various cereal crops such as maize, rice, wheat and oats in temperate and semi-
tropical areas. Among the mycotoxin-producing species are F. sporotrichioides, F. graminearum 

and F. verticillioides, which produce toxins such as zearalenone, zearalene, deoxynivalenol or 
nivalenol, T-2 toxin and diacetoxyscirpenol [1]. These toxins generate diverse diseases to crops 
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and contamination to diverse types of cereals mainly to maize being of toxicological concern 
the ear rot [2]. Therefore, the contamination prevention could be generated by the biosynthesis 
the Fusarium during the crop. Then, the development of Fusarium can be triggered by the envi-
ronmental conditions, agricultural practices and range of susceptibility [3]. Biochemical resis-

tance is directly associated with specific proteins and metabolites that focus on the biosynthetic 
analysis of mycotoxins explaining the sporadic occurrence of the mycotoxins as fungal metab-

olites. Several studies indicate that secondary metabolites present in cereals can modulate the 
production of mycotoxins, and these are important in plant response to fungal contamina-

tions, such as, the phenolic compounds that control or prevent the response to mycotoxins [4]. 
Phenolic acids, including ferulic acid, tannins and proanthocyanidins, are the most abundant 
in cereal showing the highest potential to function as fungal growth inhibitor [1, 3]. In this 
sense, the objective of this chapter is the review of the main mycotoxins of the genus Fusarium 

that affects cereals, as well as the production of secondary metabolites that can modulate their 
production. The above will gather relevant information on possible inhibition options in cereal 
contamination by mycotoxins of the genus Fusarium, including major mycotoxin-producing 
species, cereal contamination by mycotoxins (economic losses, implications to food safety and 
health), cereal secondary metabolites with antifungal activity and possible mechanisms that 
modulate inhibition of mycotoxin production of Fusarium species.

2. Overview of major mycotoxin-producing species

The genus Fusarium comprises an outsize cluster that includes animal and plant pathogenic 
species with great biological properties [5]. Some species are used as biocontrol agents, as 
industrially applicable enzymes, and some cause diseases in many agronomical crops and are 
probably the most prevalent toxin-producing fungi [6]. The genera Aspergillus, Penicillium and 

Fusarium are filamentous fungi and produce mycotoxins that are toxic and/or carcinogenic 
secondary metabolites produced under appropriate environmental conditions [7]. Fusarium 

produces three of the most important of mycotoxins, such as fumonisins, trichothecenes or zeara-

lenone, and these furthermore produce emerging mycotoxins as well as fusaproliferin, beauveri-

cin, enniatins and moniliformin [8].

Mycotoxins possess biological activities that represent a problem for both human and animal 
health (Figure 1). The ingestion of these compounds can cause chronic disease, morbidity 
and death and reduce the resistance to pathogens [9]. Most mycotoxin are stable during food 

processing, and these are commonly resistant to chemical and thermal changes. Mycotoxins 
can also come to the human by animal products [10, 11].

2.1. Aflatoxins

Aflatoxins (B1, B2, G1, G2) are difuranocoumarin synthesized by Aspergillus flavus and 

Aspergillus parasiticus present in soil and various organic materials. Aflatoxin-producing spe-

cies has been reported in a wide variety of food commodities (maize, peanuts, barley oats, rice, 
cottonseed, spices and figs [12]. Optimal conditions for their propagation are high temperature 
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and humidity (30–33°C, 0.99 water activity) [13]. Aflatoxins showed carcinogenic, teratogenic, 
hepatotoxic, mutagenic and immunosuppressive effects; specific limits have been set on aver-

age to 50 mg/kg for total aflatoxins.

2.2. Trichothecenes

Trichothecenes can be divided into four types: A (T-2 and HT-2 toxins, diacetoxyscirpenol), B 
(deoxynivalenol, nivalenol), C and D, and these are the main and most diverse chemical groups 
of the three major classes of Fusarium mycotoxins [14, 15]. These are shaped by a set sesquiterpe-

noids with or without a tricyclic nucleus. Trichothecenes are small, amphipathic molecules that 
can move passively across cell membranes [16, 17]. The most prevalent contaminants in wheat, 
barley, oats and maize are trichothecenes of types A and B. Exposure to these toxins can cause 
immunological problems, vomiting, skin dermatitis, hemorrhagic lesions, acute diseases and gas-

troenteritis. Trichothecenes in wheat behaves as phytotoxic were causing chlorosis, inhibition of 
root elongation, and dwarfism [4, 9]. Trichothecenes show several inhibitory effects such as inhi-
bition of proteins, DNA and RNA synthesis on the primary metabolism of eukaryotic cells [18].

2.3. Deoxynivalenol

Trichothecene of type B (deoxynivalenol) is produced by Fusarium graminearum and Fusarium 

culmorum; these mycotoxin-producing species are found in wheat, rye, barley and oats [18]. 
These are a group of toxins with a keto group at carbon 8 of the parent epoxytrichothecene 
nucleus [19]. Deoxynivalenol is divided into five types (deoxynivalenol, 15-acetyldeoxynivale-

nol, 3-acetyldeoxynivalenol, fusarenon-X and nivalenol). “ribotoxic stress response” is produced 

Figure 1. Group of mycotoxin-producing species.
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by deoxynivalenol added the ribosome in eukaryotic cells [20]. The impact of deoxynivalenol on 
the immune system ranges from immunosuppression to immunostimulation, according to its 
concentration, duration and time of exposure [19].

2.4. Nivalenol

Nivalenol are the main mycotoxins produced by F. cerealis, F. poae, F. nivale, F. culmorum and 

F. graminearum. Maize red ear rot throughout is caused by nivalenol [21]. As expected, they 
reportedly also share many toxicological properties, such as the inhibition of cell prolifera-

tion, induction of interleukin-8 secretion and the involvement of stress-activated MAPKs and 
nuclear factor-κΒ in the signal transduction pathways of toxicities [15].

2.5. Zearalenone

Zearalenone is a mycotoxin, which have a structure of estrogenic lactone; they have sufficient 
structural similarity and these synthesized by various Fusarium species—F. graminearum, F. culmo-

rum and F. crookwellense. Zearalenone is found in cereals, mainly maize, and processed foods and 
these are a non-highly toxic mycotoxin [10, 22]. These mycotoxins have been producing of estro-

genic effects in animals and the stimulation of human breast cancer cells growth. Zearalenone is a 
mycotoxin producing of host-contaminated corn [9]. Also, inhibiting the gene expression caused 
by zearalenone produced severe hepatic illness. Zearalenone has been shown to be immunotoxin 
and hepatotoxic and nephrotoxic and an enhancer of lipid peroxidation [19, 23].

2.6. Fumonisins

Fusarium verticillioides and F. moniliforme produced by Fumonisins (A, B, C, P) are toxic second-

ary metabolites, mycotoxins non-fluorescent, common fungal contaminants in grains and agri-
cultural commodities [24]. These are analogous to sphingolipids, and intake of contaminated 
foods with fumonisins B1 has been associated with equine leukoencephalomalacia, porcine 
pulmonary edema and liver cancer in rats and decreased body weights in chickens [8, 23]. The 
exposure levels ranging from 0.02 to 0.2 mg/kg in body weight have been found of fumonisin 
concentration; these are within the limit of intake. Although fumonisins are relatively thermal 
stability, these may undergo reactions in food systems that alter their chemical structure and 
toxicity and is potentially hazardous to the health of both humans and animals [25].

3. Overview of mycotoxin-contaminating cereals

Mycotoxin contamination can occur pre-harvest when the crop plant is growing or post-
harvest during processing. Storage of cereals at temperatures over 37°C increases humidity 
during prolonged storage times is a factor for crops and cereals to be susceptible to mold 
growth and mycotoxin contamination [16]. The susceptibility of the grain is another factor 
to consider, presenting greater susceptibility maize and lower rice. Animal pests, weeds and 
pathogens impact yield and quality of cereals. F. graminearum mostly affects cereals, includ-

ing maize, wheat and barley. The predominant Fusarium species associated with ear and stalk 
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rots are F. graminearum followed by F. verticillioides, F. proliferatum and F. culmorum [21]. These 
Fusarium species are also capable of producing mycotoxins, which contribute to pre-harvest 
contamination of human food and animal feed impacting health [7]. Among Fusarium spp., F. 

graminearum is the most common agent causing Fusarium head blight [26]. The major myco-

toxin type of F. graminearum, F. sporotrichioides and Fusarium avenaceum is the trichothecene 

type-B mycotoxin class of fungi capable of producing deoxynivalenol and its derivatives 
(3Ac-deoxynivalenol, 15Ac-deoxynivalenol) or nivalenol. The nivalenol-producing isolates 
of F. graminearum have been found to be more aggressive in maize than the deoxynivalenol-
producing isolates [15]. On the other hand, maize production is mainly affected by diseases 
caused by the species Fusarium proliferatum, F. verticillioides and F. subglutinans and mycotoxin 
generators including fusaric acid, fusarins and fumonisins. Among fumonisins, fumonisin B1 
(FB1), FB2 and FB3 are most frequently encountered in maize kernels [1, 27]. Fusarium spo-

rotrichioides is a common soil-borne plant pathogen causing dry rot of potato [28].

4. Cereal secondary metabolites with antifungal activity

A component of the plant resistance to Fusarium and their toxins is related to the capacity 

of plant tissues to reduce the fungal infestation and mycotoxin accumulation (e.g. zearale-

none, type B trichothecenes, fumonisins) throughout the presence of secondary metabolites. 
Secondary metabolites are compounds produced by plants for which no role has yet been 
found in growth, photosynthesis, reproduction or other “primary” functions; however, it has 
been found that they are implicated in plant defense. The presence of secondary metabolites 
along with temperature, water activity, pH and nutrients have been identified as key features 
regulating Fusarium and their mycotoxins [29].

Plant endogenous compounds can be both constitutively synthesized and induced in response 
to pathogen infection. Recent metabolomic studies have pointed an important amount of cereal 
metabolites produced by cereals such as fatty acids, amino acids and their derivatives, carbohy-

drates, amines and polyamines, terpenoids, benzoxazinoid derivatives and phenylpropanoids 
that contribute to the resistance of Fusarium and low mycotoxin accumulation (Figure 2). These 
metabolites are derived from primary and secondary metabolism [30]. Based on their biosyn-

thetic origins, plant secondary metabolites can be divided into three major groups: phenylpro-

panoids, terpenoids and nitrogen-containing alkaloids. The secondary metabolites that play a 
role in the plant resistance to Fusarium and mycotoxin accumulation are listed below.

4.1. Phenylpropanoids

Phenolic compounds are secondary metabolites that are produced by descend from the phen-

ylpropanoid pathway and are synthesized by plants from the amino acid phenylalanine. Plant 
biosynthesis produces various phenols that can be grouped commonly as flavonoids and phe-

nolics. Flavones, flavonols, flavanones, flavan-3-ols, anthocyanidins, isoflavones, coumarins, 
stilbenes and lignans are the main flavonoids. These are structurally distinct because of their 
specific hydroxylation, methylation and conjugation patterns, with various monosaccharides 
and disaccharides. Phenolic acids found in cereals exist in both soluble (free) and insoluble 
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(cell wall-bound) forms [31]. The major portion of phenolic compounds is in the outer part of 
grains. Moreover, phenolic acids, predominantly ferulic and coumaric acid, play an impor-
tant role in limiting polysaccharide degradation by exogenous enzymes, where they act as a 
cross-link between polysaccharides and between polysaccharides and lignin [32].

Phenolic compounds in plants are involved in the interaction between the pathogen and the 
plant. For example, the phenolic acids accumulated throughout the development of wheat-
kernel development impact positively the resistance to Fusarium [33]. It has been reported 
the fungicidal efficiency of phenolic compound considering IC

50
 values. These values rank 

between 0.7 and >10 mM [30].

It has been stated that the most maize-resistant genotypes exhibited high levels of phenylpro-
panoids, which were related to low levels of disease severity and grain fumonisin (FUMO) 
concentration [34]. In a study using wheat cultivars (winter and spring), significantly higher 
amounts of free phenolic compounds were found in the glumes, lemmas and paleas of the 
spring cultivar prior to and at all sampling times after inoculation, in comparison to the win-
ter wheat cultivar. The spring cultivar exhibited resistance against initial infection by the fun-
gus. It was found that the amount of p-coumaric acid increased significantly in the glumes, 

Figure 2. Cereal secondary metabolites with antifungal activity.

Fusarium - Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers28



lemmas and paleas of the spring cultivar concluding that phenolic compounds appear to play 
a role in the resistance of the cultivars to F. culmorum [35]. In the same way, a study with 
date palm roots showed that date palm roots contain four cell wall-bound phenolics identi-
fied as p-hydroxybenzoic acid, p-coumaric acid, ferulic acid and sinapic acid. The contents 
of p-coumaric acid and ferulic acid, p-hydroxybenzoic acid, sinapic acid and lignin in the 
resistant cultivars to F. oxysporum were about 2, 8.4, 4.5 and 1.8 times higher than those in the 
susceptible cultivars [36].

Regarding mycotoxin production, cinnamic acid derivatives such as sinapic, caffeic, p-cou-

maric, chlorogenic and ferulic acids are efficient inhibitors of TCTB (type B trichothecenes) 
production by F. graminearum and F. culmorum. It is important to mention that the effect of 
phenolic compounds is strain and molecule dependent [37].

An amount of studies support that phenolic compounds have a role in enhanced plant resis-

tance to Fusarium [38–43]. Besides, number of studies related to phenolic acids supports that 
in cereals, cell wall-bound ferulic acid along with its dehydrodimers and free chlorogenic acid 
could be pivotal components of the resistance to toxigenic Fusarium species [34].

4.2. Terpenoids

Terpenes are the most numerous and structurally diverse plant natural products. The plethora of 
terpenoid compounds is biosynthetically assembled from only two simple precursors, isopente-

nyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). Plant terpenoids include 
compounds ranging from C5 hemisesquiterpenes to C40 tetraterpenes, with diverse physical and 
chemical properties leading to lipophilic or hydrophilic, volatile or non-volatile metabolites [44].

Several terpenoids have their roles in plant defense against biotic and abiotic stresses, or they 
are treated as signal molecules to attract the insects of pollination. In a study using cyclic 
terpenes (limonene, menthol, menthone and thymol) against F. verticillioides, limonene and 
thymol showed the highest inhibitory effects on F. verticillioides development. Thymol was the 
most active inhibitor of fumonisin B1 biosynthesis [45].

In the last year, essential oils, which composition mainly include terpenes and terpenoids, from 
different plants were used in the prevention of fungi and mycotoxins accumulation in cereals. 
A study using Melissa officinalis, Salvia officinalis, Coriandrum sativum, Thymus vulgaris, Mentha 

piperita and Cinnamomum zeylanicum showed that all these essential oils have an inhibitory effect 
on fungal contamination of wheat seeds. This ability was dose-dependent. Regarding myco-

toxin development, the best control on fumonisins production was recorded for Cinnamomum 

zeylanicum [46]. Similar findings regarding essential oils were done by Daferera et al. [47]; 
Fusarium sp. was completely inhibited by oregano, thyme, dictamnus and marjoram essen-

tial oils at moderately low concentrations (85–300 μg/mL). Also, oils from Cymbopogon citratus, 
Ocimum basilicum and Ocimum gratissimum were the most effective in vitro, completely inhibit-
ing the growth of F. verticillioides. The application of these oils at concentrations of 8, 6.4 and 4.8 
μL/g inhibit the growth of F. verticillioides in maize for a period of 21 days. It was also observed 
that the production of fumonisin was not affected by the lower concentration (4.8 μL/g) [48].
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On the other hand, in a cromatografy study, volatile organic compounds (VOCs) were identi-
fied using GC-MS in oats, barley and wheat infected by three species of Fusarium, including 
species that caused cortical rot disease in wheat, and two terpenes were identified (linalool and 
β-caryophyllene), which found higher concentrations with respect to the controls [49].

The metabolomics as a tool helped in to identify the metabolites in barley that are related to 
resistance against Fusarium head blight FHB exposed that metabolites conferring resistance 
mainly belonged to phenylpropanoid, flavonoid, fatty acid and terpenoid metabolic pathways 
[50]. A research by Wang et al. [51] exposed a number of genes involved in secondary metab-

olites biosynthesis are specifically responsive to F. verticillioides inoculation in BT-1 kernels. 
Terpenoid biosynthesis and diterpenoid biosynthesis were particularly increased by F. verticil-

lioides inoculation. See Ref. [29] to review a list of terpenoids conferring resistance to Fusarium.

4.3. Alkaloids

Alkaloids are a group of chemical compounds that mostly contain basic nitrogen atoms. 
Saponins are a class of glycosylated triterpenes; steroids and steroidal alkaloids synthesized 
from the mevalonate or non-mevalonate pathway in plants. These compounds are absent in 
most monocotyledon plants and all cereals except in oat. The glycosylated form confers activity 
to avenacins, contrary to other compounds such as avenacosides, benzoxazanoids and other 
compounds with antifungal activity, then only with active in its form of aglycone [52]. Vacuoles 
are the reservoir of inactive avenosides, which allow them to be available when there is tissue 
damage caused by pathogenic fungi causing their activation; this results in alteration of the 
membranes and consequently the formation the biologically active aglycone. In a research per-

formed by the homozygous mutant, A. strigose lines and the wild-type line were inoculated with 

fungal pathogens to assess the effects of the saponin-deficient mutations on plant disease resis-

tance. The results exhibited that mutant plants showed increased susceptibility to Fusarium cul-

morum and Fusarium avenaceum revealing an implication of saponins in the plant resistance [53].

The best-known alkaloids of grasses are hordenine and gramine. Hordenine is found in many 
plant species and in cereals; it has been reported in barley, millet and sorghum. The reports of 
their allelopathic effects may imply a resistance to Fusarium and their mycotoxins; however, 
no specific reports have been found.

Several compounds within the monoterpene indole alkaloid class are known to exhibit anti-
fungal properties. Secologanin production is induced by the application of methyl jasmo-

nate in C. roseus, perhaps suggesting a link between defense-related signaling pathways and 
monoterpene indole alkaloid production. A study using double haploid barley lines differing 
in Fusarium head blight sensitivity observed metabolite accumulation and found secologanin 
was constitutively produced in resistant lines [54]. Few alkaloid compounds have been identi-
fied within wheat. A more detailed understanding of how cereal crops and related grass spe-

cies respond to Fusarium pathogens will reveal novel mechanisms of resistance.

4.4. Benzoxazinoid

Benzoxazinoids (Bxs) are widely distributed in cereals discovered in the 1950s. A range of 
biological roles such as allelopathy, resistance to insects and defense against pathogens has 
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been attached to them [55]. Benzoxazinoids are synthesized in the shikimate pathway from 
the amino acid tryptophan. They are present in maize; wheat, rye and certain wild barley spe-

cies, however, have not been found in cultivated barley varieties, oat or rice. Bxs are stored 
in an inactive glucoside form in plant vacuoles or plastids to avoid toxicity to the plant itself; 
through the enzymatic activation and chemical degradation, the tissue disrupted form the 
active benzoxazinoid [56]. In a research using wheat, principal component analyses demon-

strated a correlation between the susceptibility to FHB and the concentrations of range of Bxs 
[57]. The benzoxazinoid 2-β-glucopyranoside-2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-
one (DIMBOA-glc), α-tocopherol and the flavonoids homo-orientin and orientin were identi-
fied as potential inhibitors of (deoxynivalenol) DON accumulation in a study with wheat that 
correlates accumulation in Fusarium-infected winter and spring wheat cultivars [58].

A plethora of secondary metabolites have been reported to inhibit Fusarium and their myco-

toxins; however, the molecular mechanisms of plant resistance to both are needed to provide 
a deeper understanding of the mode of actions of the metabolites as well as the mechanisms 
of detoxification.

5. Possible mechanisms and management that modulate inhibition 

of mycotoxin production of Fusarium species

Mycotoxins produced by Fusarium spp. include different compounds with trichothecenes, 
fumonisins, zearalenone and emerging toxins such as fusaproliferin, enniatins, beauvericin and 
moniliformin [10]. This mycotoxins genus can infect cereals directly during ripening, harvest-
ing or storage, the crop soil affecting plant growth and development, which makes its eradica-

tion complex and difficult, but various strategies are used to reduce this contamination, butte 
the best strategies cannot completely eradicate mycotoxin contamination. Prevention strategies 
during cultivation and storage aim to eliminate mycotoxins; some of the strategies used are 
crop rotation; in this sense, Schaafsma et al. [59] observed in a 4-year study that planting a crop 
other than wheat 2 years previous to planting a wheat crop significantly decreased the level 
of DON in wheat grain in 1 year out of four. This type of studies support the theory that crop 
residues are the source of Fusarium toxin inoculum, so alternating crops would reduce the pos-

sibility of contamination. However, studies such as that reported by Fernández-Blanco et al. 
[25] indicate that wheat grown consecutively (each year) has less contamination by Fusarium 

toxins than alternately grown wheat. Urea fertilization is another strategy to reduce contamina-

tion by Fusarium sp. as mentioned by Teich [60] and Martin et al. [61], where they applied urea 
instead of ammonium nitrate, with fewer pollution symptoms observed. Among the aspects to 
consider in order reducing Fusarium contamination is the cultivation season, since it has been 
documented that winter varieties develop and mature before spring varieties, which reduce the 
risk of Fusarium infection, for avoid that flowering coincides with spore release.

Alternatives to chemical fungicides, such as biocontrol agents, have been tested extensively in 
both the greenhouse and field environment, but the toxins of Fusarium control efficacy under 
field conditions have not been consistent [62]. However, some of the strategies to reduce con-

tamination at the crop level are not always effective, so at the storage level it is sought to 
address other types of strategies.
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5.1. Storage

The mycotoxins generated by Fusarium sp. usually present with greater incidence during 
the storage. The conditions for the mycotoxins biosynthesis are the grain with temperature 
25–32°C, moisture between 16 and 30% and air RH of 80 and 100% [63]. This is why the strate-

gies to mitigate and inhibit mycotoxins are postharvest management and storage strategies. 
Postharvest management has a significant role in mitigation of mycotoxins through good 
management in grain food chains during harvesting, cleaning, drying, storage and process-

ing. The control of moisture, temperature and humidity to safe storage levels laid a key to 

mitigate mycotoxins in grains. Ouzounidou et al. [64] indicate that reduction in oxygen and 

increase in carbon dioxide concentrations generate effects on the growth of fungi. Decreasing 
O2 to minor of 0.14% and increasing CO2 to more of 50% are required for inhibition of myce-

lial growth and will prevent mycotoxin [65]. The degree of inhibition achieved by elevated 
CO2 concentrations is dependent on other environmental factors, such as relative humidity 
(RH) and temperature [66]. Irradiation is usually used as a mitigation of mycotoxins; 4–6 kGy 
gamma-irradiation reduces Fusarium toxins and was eliminated at 8 kGy [67]. Both inhibition 
and elimination of Fusarium mycotoxins can be attributed to providing energy, which results 
in reactions and changes molecular structures.

5.2. Chemical and biological control

Another strategy is the application of chemical control as fungicides; however, this applica-

tion can sometimes be ineffective and even increase the production of mycotoxins [68, 69]. 
That is why another alternative is the use of natural products in specific essential oils and 
antioxidant compounds. In stored cereals, the application of natural preservatives and essen-

tial oils generate inhibition on Fusarium mycotoxins production is found [46]. On the other 
hand, the agreement of chemical compounds and natural products can generate a reduction 
of 90% in deoxynivalenol (DON) (Fusarium toxin) as reported by Magan [70] in agreeing BHA 
(butyl hydroxyl anisole), PP (propyl paraben), resveratrol and cinnamon oil. In relation to the 
use of natural compounds, a study of phenolic extract of Spirulina sp. reported by Pagnussatt 
et al. [71] indicates that the Spirulina LEB-18 extract led to mycelial growth inhibitions that 
ranged between 50% and 90% in addition, the extract inhibits production of nivalenol (NIV) 
and deoxynivalenol (DON) in 73%. This may be attributed to the extract composition (main 
constituents were gallic and caffeic acid). Apparently, these compounds act as fungal stress-

ors when they hamper the energy abstention due to the lower glucose availability [72]. This 
may trigger the production of secondary metabolites to compensate and limit the apparent 
competition by the substrate of the medium [73].

Biological control is another strategy in the reduction and incidence of Fusarium toxin using 

living microorganism’s whit Bacillus spp. [74], Pseudomonas spp. [75] and Streptomyces spp. [74]. 
The lactic acid bacteria (LAB) strains have been examined for their potential to detoxify zeara-

lenone (ZEA) that is an estrogenic mycotoxin produced by Fusarium [76]. Sangsila et al. [77] 

showed that these strains of LAB are capable of ZEA detoxification in a range of 29.74–83%, 
where the strain with the best binding capacity was JM0812 with 83% at an initial concentra-

tion of ZEA of 74.7 μg/ml, followed by UM054 and UM055 with 82.78 and 81.69%, respectively.
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Mycoparasitism is the mechanism by which a fungus parasitized another fungus and is used 
with biocontrol strategy. Many studies suggested that mycoparasitism was associated with 
competition for nutrients and space, generation of antibiotic and induction of systemic resis-

tance on Fusarium spp. [78–80]. Competition for nutrients and space in the soil is considered 
to be responsible for the phenomenon of fungistasis via the inhibition of the germination of 
fungal spores in soil [81]. The deprivation of the resource in the soils is partly responsible for 
the suppressive nature of soils. When the antagonists present in sufficient quantity at the right 
time and place and can use nutrients more efficiently than the pathogen, this competition can 
be used as an effective biological control.

On the other hand, the production of metabolites toxic is another strategy used for the con-

trol of diverse strains of Fusarium. Dunlap et al. [82] in B. amyloliquefaciens AS 43.3 identified 
nine gene clusters encoding for the biosynthesis of secondary metabolites associated with the 
biological control of Fusarium. The application of gases like ozone is another strategy for the 
detoxification of mycotoxins; Li et al. [83] obtained a reduction of 57.3% in DON by ozonation, 
with the moisture content of 17% in wheat. The ozone is a gas, has a favorable penetration 
and can decompose the double bonds in organisms and further produces simple products 
with less double bond and low molecular weight; in addition, it can decompose to oxygen 
voluntarily with non-toxic residual. Other strategie is the application of photocatalytic activ-

ity of graphene/Zno hybrids can be useful to degrade DON up to 99% according to Bai et al. 
[84]. The information on possible mechanism and strategies that can help detoxification of 
mycotoxins has increased, however, the road is still long.
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