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Abstract 

Water quality assessment requires a continuous and strict analysis of samples to 

guarantee compliance with established standards. Nowadays, the increasing number 

of pollutants and their synergistic effects lead to the development general toxicity 

bioassays capable to analyse water pollution as a whole. Current general toxicity 

methods, e.g. Microtox®, rely on long operation protocols, the use of complex and 

expensive instrumentation and sample pre-treatment, which should be transported to 

the laboratory for analysis. These requirements delay sample analysis and hence, the 

response to avoid an environmental catastrophe. In an attempt to solve it, a fast (15 

min) and low-cost toxicity bioassay based on the chromatic changes associated to 

bacterial ferricyanide reduction is here presented. E.coli cells (used as model 

bacteria) were stably trapped on low-cost paper matrices (cellulose-based paper 

discs, PDs) and remained viable for long times (1 month at -20ºC). Apart from 

bacterial carrier, paper matrices also acted as a fluidic element, allowing fluid 

management without the need of external pumps. Bioassay evaluation was 

performed using copper as model toxic agent. Chromatic changes associated to 

bacterial ferricyanide reduction were determined by three different transduction 

methods, i.e. (i) optical reflectometry (as reference method), (ii) image analysis and 

(iii) visual inspection.  In all cases, bioassay results (in terms of half maximal effective 

concentrations, EC50) were in agreement with already reported data, confirming the 

good performance of the bioassay. The validation of the bioassay was performed by 

analysis of real samples from natural sources, which were analysed and compared 
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with a reference method (i.e. Microtox). Obtained results showed agreement for about 

70% of toxic samples and 80% of non-toxic samples, which may validate the use of 

this simple and quick protocol in the determination of general toxicity. The minimum 

instrumentation requirements and the simplicity of the bioassay open the possibility of 

in-situ water toxicity assessment with a fast and low-cost protocol. 
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1. Introduction 

 

Water pollution, mainly due to human activity is considered one of the major 

problems in both industrialized and developing countries [1]. Governments, assisted 

by water companies and health institutions, have established water quality standards 

of mandatory compliance for drinking, regenerate and reused water [2]. In order to 

comply with these standards, water distribution companies perform regular controls of 

primary and secondary pollutants based on standard analytical methods (e.g. high-

pressure liquid chromatography, HPLC, or gas chromatography, GC) [3]. These 

protocols allow the precise, sensitive and selective determination of individual toxic 

agents, even at the pK order, but rely on lengthy protocols, the use of expensive and 

bulky benchtop instrumentation (increasing the cost per assay) and the requirement 

of sample pre-treatment and transport to the laboratory [4]. This last limitation is 

particularly relevant in the case of water pollution since, sample transport to the 
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laboratory delays data acquisition, thus postponing any action to prevent a sanitary 

problem or an environmental disaster [5, 6]. Apart from that, these methods may be 

not suitable for samples containing more than one toxic agent, since they do not 

account  on their synergistic collective effects.  

For this reason, one of the most popular tendencies nowadays in water 

pollution assessment is the development of general toxicity bioassays capable to 

analyse water pollution as a whole [7]. These bioassays are mostly based on the use 

of living organisms (e.g. daphnids, fish, algae, bacteria, among others) which die in 

the presence of toxic pollutants [8, 9]. The number of dead/living organisms can be 

determined by several methods, depending on the case. Microbial-based bioassays 

are advantageous for being simpler, faster and cheaper than bioassays using more 

complex organisms.  In fact, the reference general toxicity assay, i.e. Microtox®, is a 

microbial-based bioassay that uses the bioluminescent light emission of the Vibrio 

fischeri bacterium to report about sample toxicity [10]. Despite of being sensitive and 

reliable, Microtox® presents important limitations associated to the low robustness of 

the microorganism, which requires specific culture media, and the instrumentation 

(bacterial luminescence is weak and requires expensive and bulky benchtop 

instrumentation for the measurement). Even considering the portable version of 

Microtox® [11], the size, weight and cost still compromises its application to in-situ 

detection of water toxicity. 

On the other hand, respirometric microbial bioassays and biosensors provide 

with simple, fast and robust protocols implemented in low-cost, miniaturized and 

portable instrumentation.  In general terms, respirometric assays consist of monitoring 

the microbial reduction rate of an electron acceptor (e.g. oxygen, nitrate, ferricyanide, 

benzoquinone, etc.) as an indirect indicator of microbial metabolic activity [12]. From 

the broad spectrum of electron acceptors, ferricyanide is one of the most attractive for 

presenting high aqueous solubility (many orders of magnitude higher than oxygen) 

and low toxicity [13, 14]. In terms of performance, ferricyanide is easily reduced by 
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bacterial metabolism to ferrocyanide. In the presence of a toxic agent, the bacterial 

metabolic activity is reduced or stopped, with a consequent decrease in the 

ferricyanide reduction rate. Up to now, most of reported ferricyanide-based bioassays 

are amperometric [9, 15]. Amperometry has important advantages, such high 

sensitivity, wide detection ranges and the use of simple, low-cost and miniaturized 

instrumentation. However, they are limited by interfacial mass transport and analyte 

consumption [16], are very sensitive to environmental conditions (e.g. temperature, 

medium composition, etc) [17] and are affected by bacterial adhesion to electrode 

surface (i.e. biofouling), which compromise sensor durability, reliability and 

repeatability. Most of these disadvantages are overcome when considering non-

invasive and contactless optical transducers, which enable bulk interrogation of the 

sample without interferences of environmental factors and without affecting chemical 

or biological processes under study [18, 19]. 

Considering this fact, our group has recently developed a toxicity bioassay 

based on the optical determination of the bacterial ferricyanide reduction kinetics [20]. 

Briefly, bacterial metabolism reduces the yellow-coloured ferricyanide (maximum 

absorption at 420 nm) to the colourless ferrocyanide producing a change in 

absorbance that can be monitored at real time. Ferricyanide reduction kinetic was 

determined instead of a punctual absorbance measurement for allowing fast (10 min), 

quantitative and sensitive toxicity determination without interference of the light 

dispersion associated to bacterial biomass.  

The implementation of the current methodology to in situ toxicity analysis 

would require suitable transduction and fluidic elements for optical detection and fluid 

management, respectively. In this article, the implementation of the previous 

methodology is achieved by the use of bacterial paper discs (BPDs; paper discs 

containing entrapped bacteria) and chromatic analysis using Escherichia coli (E. coli) 

as model bacterium. Cellulose is selected as support material for bacterial 

entrapment for presenting ideal physicochemical properties, such as hydrophilicity, 
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biocompatibility and biodegradability [4, 21]. These properties ensured long-term cell 

entrapment with high stability and without compromising bacterial viability. On the 

other hand, chromatic analysis of ferricyanide reduction kinetics may be performed 

with several optical methods with minimal associated instrumentation. Three of them 

are analyzed and compared in this work, concretely optical reflectometry, image 

analysis and visual inspection.  

 The paper-based chromatic toxicity bioassay was evaluated using copper as 

model toxic compound and subsequently validated with several natural water 

samples after comparison with the reference method Microtox®. 

 

2. Materials and methods 

 

2.1. Chemicals and samples 

            

Potassium ferricyanide, copper sulphate, glucose, potassium di-hydrogen 

phosphate and di-potassium hydrogen phosphate were purchased from Panreac 

(Spain). All chemicals were of analytical grade and all solutions were prepared with 

distilled water, unless otherwise stated. Sewage effluents were collected either prior 

or after passing through a water treatment plant and kept refrigerated until brought to 

the laboratory. Leachates from contaminated soils were prepared according to the BS 

EN 12457-2 (2002) standard. Following this guideline, soil samples were incorporated 

into 2 L glass vessels at a ratio of 0.1 kg of soil per litre of deionized water. Vessels 

were placed at a rotating apparatus and mixed during 24±1 hours at a temperature of 

20±2ºC. After a settling period of 15 minutes, samples were centrifuged (2000 x g, 10 

minutes) and filtered through 1 µm cellulose membranes. All test samples were 

frozen until use. 
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2.2. Bacterial paper discs (BPDs) preparation  

            

E. coli K12 (CGSC 5073) was grown aerobically in Luria-Bertani (LB) broth for 

18 hours at 37°C. Grown cultures were centrifuged at 10100 x g for 15 min and re-

suspended in 0.1 M phosphate buffer (PB) containing 2% glucose to a bacterial 

concentration of 2.0x1010 ± 0.5x1010 cell mL-1. Bacterial concentration was 

determined by absorbance at 600 nm with a SmartspecTM Plus spectrophotometer 

(Bio-rad, California, US). Bacteria were then entrapped in 9 mm PDs (0.7 mm 

thickness) which were used as supporting material. For cell entrapment, bacterial 

suspension volumes of 60 μL were inoculated in one side of PDs and dried at room 

temperature for 2 hours in a laminar flow cabin (Telstar AV-100). After complete 

dehydration, they were stored at -20ºC until required.  

 

2.3. Bacterial viability and entrapment characterization 

 

When evaluating bacterial viability, stored BPDs were rehydrated by 

immersion in 0.9% (w/v) NaCl and shacken with vortex for 4 minutes to re-suspend 

attached bacteria. The number of viable cells was determined by plating on LB agar. 

Scanning Electron Microscope (SEM) imaging of BPDs was performed after 

fixation with 3% glutaraldehyde in PB and critical point drying (dehydration with 

different ethanol concentrations from 50% to 100%) with a Bal-Tec CPD030 (Bal-Tec, 

California, US). MERLIN Fe-SEM (Zeiss, Germany) was used to visualize dried 

BPDs. 

 

2.4. Toxicity assays with BPDs  

            

BPDs were rehydrated by inoculation of 50 μL of a mixture containing 10 mM 

ferricyanide and a suitable dilution of the sample under study (in PB). The dilution 
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depended on the sample. Reflectometry, imaging and visual inspection analysis were 

performed as follows. Concentration-response curves were constructed for 

reflectometry and image analysis data, and half maximal effective concentrations 

were calculated from the obtained curve fitting.  

 

2.4.1. Reflectometry assay 

In reflectometry measurements, an optical setup with a 90 degrees 

configuration was used (Fig. 1a). To this end, both optical fibers were positioned at a 

distance of the sample and tilted 45 degrees from the vertical, with a total angle 

between fibers of 90 degrees. The distance to the sample surface depended on the 

optical fiber. The fiber connected to the emitter, i.e. a halogen light source HL-2000-

FHSA (Ocean optics, Florida, US), was positioned at 0.5 cm from that. The one 

connected to the detector (USB2000+XR microspectrometer, Ocean optics, Florida, 

US), on the other hand, was positioned slightly farther at 0.7 cm of the sample, to 

minimize the interference of the emitting light in the recorded measurements. During 

measurements, the light beam was focused to the centre of the BPD to minimize 

variability.  Absorbance at 420 nm, corresponding to ferricyanide absorption, was 

monitored over time. Optical measurements were performed using the Spectra Suit 

software (Ocean optics, Florida, US), with an integration time of 300 ms and taking 

the average of 5 replicates. PDs immersed in PB were taken as reference in the 

determination of the absorbance spectra.  

Reflectometric determination of samples toxicity was based on a variation of a 

toxicity microbial bioassay already reported by our group [20]. This protocol monitored 

the reduction of coloured ferricyanide (absorbance at 420 nm) to colourless 

ferrocyanide by reductive bacterial metabolism. The kinetic reduction of ferricyanide 

(i.e. slope in the ferricyanide absorbance versus time plot) was used to quantitatively 

determine the toxicity of the sample under study. The presence of toxic agents in the 

samples killed or inhibited bacteria, decreasing ferricyanide reduction kinetics to 
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some extent. Thus, slower ferricyanide reduction kinetics was obtained when toxicity 

increased. The percentage of inhibition (I), was determined by comparison of the 

kinetic slope of BPDs with toxic agent (Stoxic) with the kinetic slope of a control sample 

(Scontrol) of BPDs incubated with the same concentration of ferricyanide without toxic 

agent, as follows:  

 

    I = (100 – [Stoxic/S control)]) x 100            (Eq. 1) 

 

2.4.2. Image analysis  

Image analysis protocol consisted of image acquisition in BPS samples after 

30 minutes of reaction and image analysis using the free software ImageJ. First, 

colour images (RGB) were taken with a Canon PowerShot SX50 HS digital camera 

(Canon, Tokyo, Japan). Colour images were next split into the three primary colour 

channels (i.e. red, green and blue). From them, only those corresponding to the blue 

channel, the complementary to the yellow coloured ferricyanide, were selected for 

further analysis (Fig. 1b). Images were then converted to grey scale. The grey 

magnitude was inversely proportional to the yellow colour intensity, and thus to the 

ferricyanide concentration in the sample after 30 minutes of reaction (Fig. 1b).   

Sample toxicity was determined, in this case, by comparing the grey value 

magnitude of the sample (Gtoxic) with controls of BPDs incubated with ferricyanide 

without toxic agent (Gcontrol) and PDs containing sample with ferricyanide but without 

bacteria (Gferricyanide), and using the following expression:  

 

    I = (Gtoxic - Gcontrol]/ [Gferricyanide – Gcontrol) x 100  (Eq. 2) 

 

2.4.3. Visual inspection 

Visual inspection analysis consisted of qualitative evaluation of sample colour 

after 30 minutes of reaction. Two samples were prepared simultaneously and used as 
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reference, one with the same ferricyanide and bacterial concentration but without 

toxic compounds (positive control) and another with the same ferricyanide 

concentration without bacteria (negative control). Sample toxicity was determined by 

comparison with these two reference samples. In this case, results came from 10 

different individuals.  

 

 

2.5. Vibrio fischeri luminescence inhibition test (Microtox®) 

In the Microtox® assay, acute toxicity of water samples was determined by 

means of the inhibitory effect that these samples had on the light emission of the 

bioluminescent bacterium V. fischeri. Assays were carried out according to ISO 

11348-3 (2007). Test samples were diluted and the luminescence emitted by the 

organisms was measured after 15 minutes of exposure with a Microtox® 500 system 

(Microbics©). Three replicates ran for each sample and results were expressed as 

percentage of inhibition.  

 

3. Results and Discussion 

 

    3.1. Analytical performance of the PDs substrate in optical measurements 

 

With the aim of developing a low-cost and reliable microbial bioassay for in-

situ water toxicity assessment, absorbent cellulose-based PDs were selected as 

substrate material for multiple reasons. For instance, for being cheap, biocompatible, 

capable to stably trap bacteria and for presenting high capillarity, which allows liquid 

management without the need of external pumping elements. However, cellulose 

matrices present important limitations. That is, they are usually claimed to be 

heterogeneous and poorly repetitive which may affect analytical signal, thus 

compromising the reliability of the assay. In order to check it, individual PDs (n = 10) 
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were analysed by optical reflectometry under several experimental conditions, i.e. dry, 

wet with PB, wet with ferricyanide (Fig. 2). Concerning overall results, similar 

standard deviations (SDs) were obtained for the different conditions under test. 

Nevertheless, the magnitude of the coefficient of variation (CV) significantly differed 

between conditions. Concretely, the CVs of PDs samples containing ferricyanide 

(11%) were significantly higher than those obtained by dry PDs and PDs with PB 

samples (2% and 1%, respectively). Since the SD was similar in all cases, these 

larger CVs in PDs samples containing ferricyanide may be associated to the smaller 

intensity magnitudes recorded with this samples, which should not compromise their 

performance. Thereby, cellulose matrices showed good comparability, which validate 

the use of PDs as support material for the bioassay.  

After validation of the support material, paper-based chromatic assay was 

characterized and optimized in terms of sample volume, concentration range and limit 

of detection. Considering sample volume, PDs were impregnated with different 

volumes of solution containing ferricyanide (from 20 to 80 µL) and measured using 

the reflectometry set-up. According to the data (Figure SI.1), a minimal volume 

around 40-50 µL should be used to obtain repetitive measurements. From that point, 

all assays were performed by dispensing 50 µL of solution to the centre of the PD.   

The analytical properties (e.g. linear range, sensitivity, limit of detection, etc.) 

of the paper-based chromatic assay were determined as follows. PDs without 

bacteria were inoculated with solutions containing ferricyanide concentrations from 

1.7 to 30 mM. Yellow-colour intensity in the PDs was measured with the three 

proposed methods (i.e. optical reflectometry, image analysis and visual inspection). 

Fig. 3a and 3c respectively illustrates the variation of absorbance magnitude (Abs420, 

from reflectometry) and grey value (from image analysis) with the concentration of 

ferricyanide. In both cases there was a clear correlation between measured values 

and ferricyanide concentration until saturation between 15 and 20 mM. Similar 

calibration curves were obtained by the two methods under study (Fig. 3b and 3d), 
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with good sensitivities, a wide linear range (from 1.7 to 5 mM in both cases) with good 

correlations (0.96 for reflectormery and 0.97 for image analysis) and low coefficients 

of variation (below 5% in both cases). The main difference between methods was the 

limit of detection. Reflectometric analysis presented a lower limit of detection (0.5 

mM, determined by the 3 sigma method) almost one order of magnitude lower that 

that obtained by image analysis (2 mM, from 3 sigma method). Finally, although the 

analytical properties of the visual inspection method were difficult to determine, ten 

different subjects were capable to correctly sort PDs from lower to higher ferricyanide 

concentrations from 1.7 and 10 mM, a value that was close to the chromatic 

saturation of the sample. Thus, all methods may be used in the determination of 

ferricyanide concentration, although optical reflectometry was the one presenting best 

analytical performance.  

 

3.2. Bacterial entrapment efficiency and stability on PDs 

 

Stable and viable trapping of E. coli on PD matrices (to obtain BPDs) was 

evaluated by SEM imaging and bacterial counting after plating on agar. To this end, 

BPDs were dried and stored at different temperatures (i.e. 4ºC, -20ºC and -80ºC). 

After one week, BPDs were rehydrated in PB and analyzed by SEM (after suitable 

pre-treatment to eliminate water). SEM images (Fig. 4a) revealed that a large number 

of E. coli cells were still retained inside the cellulosic matrix, preserving their integrity. 

When compared with non-stored BPDs inoculated with the same bacterial 

concentration it was observed that cell viability remained very high (almost 100%) for 

long periods (1 month) for those samples stored at -20ºC and -80ºC, while drastically 

decreased when stored at 4ºC (Fig. 4b). According to this, BPDs samples should be 

stored between -20ºC and -80ºC.  

Considering that attached bacteria dispersed light, their presence in the PDs 

may enhance measurement variability. In order to evaluate this fact, individual PDs 
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modified with bacteria (n = 10) were analysed by optical reflectometry. Results are 

plotted in Fig. 4c. BPDs presented reasonable standard deviations (525±30) and 

small coefficients of variation (6 %), completely comparable to those obtained by PDs 

without bacteria. Thus, the presence of bacteria in the PDs did not increase the 

intrinsic substrate variability.  

 

3.3. Toxicity assay characterization with synthetic samples 

 

    Toxicity assays were carried out with BPDs entrapping E. coli, which was used as 

model bacteria. Toxicity of synthetic samples containing copper as model toxic 

compound at a concentration range between 1 and 4.5 mg L-1 was evaluated by 

optical reflectometry, image analysis and visual inspection. Before analysis, toxic 

samples were diluted with 100 mM ferricyanide solutions in PB (100 μL of ferricyanide 

solution and suitable volumes of toxic sample and PB) to obtain a final ferricyanide 

concentration of 10 mM. This ferricyanide concentration was selected as suitable for 

toxicity bioassays on PDs according to the calibration curves of ferricyanide (section 

3.1.). After that, 50 µL of the mixture were inoculated at the centre of the BPDs and 

analysed for 30 minutes with the three methods, as already described. It should be 

noted that in the case of reflectometry, the kinetic analysis used optical 

measurements were performed every 5 minutes for the duration of the experiment.  

In Fig. 5a, the variation of the absorbance magnitude (at 420 nm) from 

reflectometry analysis over time is represented for four representative copper 

concentrations. As shown, the variation of absorbance magnitude was slower when 

increasing the concentration of the toxic metal ion. From Eq. (1), the percentage of 

inhibition of each toxic sample was determined and plotted (Fig. 5b). A concentration-

dependent variation of inhibition of bacterial-mediated ferricyanide reduction was 

observed in Fig. 5b with a half maximal effective concentration (EC50) of 4.1 mg L-1.  
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Regarding image analysis, the grey magnitude of four representative copper 

concentrations was represented along the 7 mm of BPD (Fig. 5c). Image analysis 

confirmed that, after 30 minutes of incubation, the magnitude of grey, inversely 

proportional to the ferricyanide concentration, depended on the concentration of the 

toxic metal ion in the sample. That is, the grey value decreased with the 

concentration, suggesting a reduction of bacterial ferricyanide reduction capacity. 

When representing the percentage of inhibition (from Eq. (2)) with the concentration 

of copper, a concentration-dependent response, as the one obtained by 

reflectrometric measurements, was obtained (Fig. 5d). Even the EC50, around 3.9 mg 

L-1, coincided with that obtained with the reflectomery assay, and was in agreement 

with those previously reported for optical kinetic analysis of ferricyanide reduction [20] 

and with the standard method Microtox® [22]. According to this, chromatic analysis of 

BPDs represents a suitable method for quantitative determination of water toxicity, 

independently on the transduction method. 

 

3.4. Validation with natural influents, effluent and leachates samples from 

contaminated soils 

 

Finally, toxicity of various real samples from natural environments before and 

after treatment was analysed with the proposed toxicity bioassay. Results were 

compared with the standard method Microtox® for validation. A summary of the 

natural samples under study (i.e. wastewater influents/effluents and leachates from 

contaminated soils) and toxicity data from reflectometry, image analysis, visual 

inspection and Microtox® are included in Table. 1.  

Samples were serially diluted to achieve sample dilutions between 5% and 

45% (v/v) as stated in ISO 11348-3 (2007), to facilitate comparison with Microtox®. 

As it can be observed in Table 1, BPDs and Microtox® were in agreement in around 

70% of the natural samples that showed toxicity, which demonstrated the good 
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performance of the paper-based chromatic bioassay. Quantitative analysis revealed 

that in most samples Microtox® showed higher sensitivity (i.e. lower EC50 values) 

than BPDs assay. Regarding non-toxic samples, more than 80% of coincidence was 

found between BPDs assay and Microtox®. Interestingly, leachates from a 

hydrocarbon-contaminated soil (sample 13) and from the same soil after remediation 

(sample 14) showed a reduction of toxicity due to the remediation process.  

Most discrepancies may be associated to physiological and metabolic 

divergences between E. coli and Vibrio fischeri, and also to the different nature of the 

measured biological signal (i.e. bioluminiscent protein synthesis vs respiratory 

activity). Lower sensitivity of respirometric bioassays in comparison with Microtox® 

has been also reported in the literature [9, 23].  It should also be mentioned that, 

although reflectometry and image analysis coincided in most of cases, sample 7 

revealed differences between them. This intriguing fact may be derived from inherent 

nature of kinetic and single measurement analysis. That is, kinetic analysis relies on a 

reversible and non-accumulative magnitude, and conversely single point analysis 

relies on an irreversible and accumulative magnitude [20]. Thus, the present 

cellulose-based bioassay represents a low-cost, simple, robust and reliable strategy 

for quick in-situ determination of toxicity with minimal instrumentation and without 

problems of portability.  

 

4. Conclusions 

 

In this work, E. coli cells (used as model bacteria) were trapped on cellulosic 

matrices (cellulose-based paper discs (PDs)) and chromatic changes associated with 

bacterial ferricyanide reduction were used for toxicity determination. Good 

comparability was found between individual cellulosic matrices, supporting their use 

for analytical purposes. Both optical reflectometry and image analysis were suitable 

for quantitative determination of ferricyanide on PDs, showing similar analytical 
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performances. Additionally, visual inspection allowed for a minimal instrumentation 

analysis method, which provided with pseudo-quantitative data regarding ferricyanide 

concentration. E. coli cells were stably trapped on BPDs, and showed good viability (1 

month at -20ºC), after inoculation and drying at room temperature, without 

compromising substrate variability. Toxicity of copper was determined by the three 

proposed methods, providing EC50 values in accordance with literature reported data. 

Furthermore, toxicity of several real samples from natural sources was evaluated, 

revealing agreement between BPDs and Microtox® for around 70% of toxic samples 

and 80% of non-toxic samples. Taking advantage of a non-expensive and lightweight 

material with minimum instrumentation requirements, the present bioassay represents 

a simple, fast and low-cost alternative to conventional methods for in-situ water 

toxicity assessment. This technology is protected by a patent (Ref: EP1641.1125).  
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Table. 1. Summary of the real samples from natural sources used and their toxicity 
expressed as EC50 values (% (v/v) of sample in sample/ferricyanide solutions) for 
BPDs and Microtox assay. (n = 3, confidence interval of 95%). 
 
Sample number and 
description 

EC50 
reflectometry 
(SD) 

EC50  
image 
analysis 
(SD) 

EC50  
Microtox®  
(SD) 

Visual 
inspection 

[1] Secondary effluent of 
urban wastewater 
treatment plant 

62.4%(6.5) 60.8%(12.4) >45% toxic 

 
[2] Industrial wastewater 
treatment plant output 

 
>45% 

 
>45% 

 
>45% 

 
non-toxic 

 
[3] Industrial wastewater 
treatment plant output 

 
>45% 

 
>45% 

 
>45% 

 
non-toxic 

 
[4] Industrial wastewater 
treatment plant output 

 
>45% 

 
>45% 

 
62.6%(6.4) 

 
non-toxic 

 
[5] Industrial wastewater 
treatment plant input 

 
>45% 

 
>45% 

 
14.6%(0.8) 

 
non-toxic 

 
[6] Industrial wastewater 
treatment plant output 

 
66.7%(8.2) 

 
64.6%(7.7) 

 
>45% 

 
toxic 

 
[7] Industrial wastewater 
treatment plant output 

 
>45% 

 
55.8%(7.4) 

 
>45% 

 
toxic 

 
[8] Leachate from 
uncontaminated soil 

 
>45% 

 
>45% 

 
>45% 

 
non-toxic 

 
[9] Leachate from a 
metal-contaminated soil 

 
>45% 

 
>45% 

 
>45% 

 
non-toxic 

 
[10] Leachate from a 
metal-contaminated soil 

 
>45% 

 
>45% 

 
>45% 

 
non-toxic 

 
[11] Leachate from a 
metal-contaminated soil 

 
>45% 

 
>45% 

 
>45% 

 
non-toxic 

 
[12] Leachate from a 
metal-contaminated soil 

 
>45% 

 
>45% 

 
>45% 

 
non-toxic 

 
[13] Leachate from a 
hidrocarbon-
contaminated soil 
 
[14] Leachate from a 
remediated hidrocarbon-
contaminated soil    
 
[15] Leachate from a 
metal-contaminated soil 
 
[16] Leachate from a 
metal-contaminated soil 
 
[17] Leachate from a 
metal-contaminated soil 
 
[18] Industrial 
wastewater treatment 
plant input 
 

 
62.6%(5.4) 
 
 
 
>45% 
 
 
 
15.2%(8.5) 
 
 
30.3%(7.5) 
 
 
38.6%(6.7) 
 
 
42.5(9.4) 
 
 
 
 

 
51.3%(8.6) 
 
 
 
>45% 
 
 
 
22.1%(5.8) 
 
 
27.3%(9.6) 
 
 
40.2%(11.2) 
 
 
38.7%(4.6) 

 
44.6%(3.3) 
 
 
 
>45% 
 
 
 
0.71%(4,3) 
 
 
1.2%(3.4) 
 
 
20.3%(5.4) 
 
 
34.0%(5.4) 

 
toxic 
 
 
 
non-tòxic 
 
 
 
toxic 
 
 
toxic 
 
 
tòxic 
 
 
toxic 
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Figure captions 
 
Fig. 1. Reflectometry set-up (a) and flow diagram illustrating image analysis for 
ferricyanide determination on PDs (b).  
	
Fig. 2. Surface analysis by optical reflectometry of dry PDs (a), PDs containing PB 
(b), PDs containing PB with ferricyanide (c). Error bars represent standard deviation 
(n = 3, confidence interval of 95%). 
 
Fig. 3. Relationship between ferricyanide concentration on PDs and obtained 
analytical signal for optical reflectometry (a, b) and image analysis (c, d). Absorption 
spectrum of several ferricyanide concentrations ranging from 1.7 to 30 mM (a) and 
the derived calibration curve (b) for optical reflectometry. Profile plot of PDs with the 
same ferricyanide concentrations (c) and the derived calibration curve (d) for image 
analysis. Grey area corresponds to samples that were correctly organized by visual 
inspection. Error bars represent standard deviation (n = 3, confidence interval of 
95%). 
	
Fig. 4. SEM image of E.coli cells in a BPD (a) and plot representing bacterial viability 
as function of time for E.coli in BPDs stored at 4ºC, -20ºC, -80ºC (b). Also BPDs 
variability is plotted by 10 independent PDs (c). Error bars represent standard 
deviation (n = 3, confidence interval of 95%). 
	
Fig. 5. Relationship between copper concentration (ranging between 1 and 4.5 mg L-1) 
and bacterial ferricyanide reduction in BPDs determined by optical reflectometry and 
image analysis. Ferricyanide reduction kinetics (a) and concentration-response curve 
(b) for copper by optical reflectometry. Profile-plot of BPDs (c) and concentration-
response curve (d) for copper by image analysis. Error bars represent standard 
deviation (n = 3, confidence interval of 95%). 
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Figure. 2. 
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Figure. 3. 
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Figure. 4. 
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Figure. 5. 
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