578 research outputs found

    Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane

    Get PDF
    During three measurement campaigns on the Baltic and North Seas, atmospheric and dissolved methane was determined with an automated gas chromatographic system. Area-weighted mean saturation values in the sea surface waters were 113 ± 5% and 395 ± 82% (Baltic Sea, February and July 1992) and 126 ± 8% (south central North Sea, September 1992). On the bases of our data and a compilation of literature data the global oceanic emissions of methane were reassessed by introducing a concept of regional gas transfer coefficients. Our estimates computed with two different air-sea exchange models lie in the range of 11-18 Tg CH4 yr-1. Despite the fact that shelf areas and estuaries only represent a small part of the world's ocean they contribute about 75% to the global oceanic emissions. We applied a simple, coupled, three-layer model to numerically simulate the time dependent variation of the oceanic flux to the atmosphere. The model calculations indicate that even with increasing tropospheric methane concentration, the ocean will remain a source of atmospheric methane

    Electronic structure and magnetic properties of the graphene/Fe/Ni(111) intercalation-like system

    Get PDF
    The electronic structure and magnetic properties of the graphene/Fe/Ni(111) system were investigated via combination of the density functional theory calculations and electron-spectroscopy methods. This system was prepared via intercalation of thin Fe layer (1 ML) underneath graphene on Ni(111) and its inert properties were verified by means of photoelectron spectroscopy. Intercalation of iron in the space between graphene and Ni(111) changes drastically the magnetic response from the graphene layer that is explained by the formation of the highly spin-polarized 3dz23d_{z^2} quantum-well state in the thin iron layer.Comment: Manuscript and supplementary material

    The Parasite Reduction Ratio (PRR) assay version 2: standardized assessment of Plasmodium falciparum viability after antimalarial treatment in vitro

    Get PDF
    With artemisinin-resistant Plasmodium falciparum parasites emerging in Africa, the need for new antimalarial chemotypes is persistently high. The ideal pharmacodynamic parameters of a candidate drug are a rapid onset of action and a fast rate of parasite killing or clearance. To determine these parameters, it is essential to discriminate viable from nonviable parasites, which is complicated by the fact that viable parasites can be metabolically inactive, whilst dying parasites can still be metabolically active and morphologically unaffected. Standard growth inhibition assays, read out via microscopy or [3H] hypoxanthine incorporation, cannot reliably discriminate between viable and nonviable parasites. Conversely, the in vitro parasite reduction ratio (PRR) assay is able to measure viable parasites with high sensitivity. It provides valuable pharmacodynamic parameters, such as PRR, 99.9% parasite clearance time (PCT99.9%) and lag phase. Here we report the development of the PRR assay version 2 (V2), which comes with a shorter assay duration, optimized quality controls and an objective, automated analysis pipeline that systematically estimates PRR, PCT99.9% and lag time and returns meaningful secondary parameters such as the maximal killing rate of a drug (Emax) at the assayed concentration. These parameters can be fed directly into pharmacokinetic/pharmacodynamic models, hence aiding and standardizing lead selection, optimization, and dose prediction. © 2023 by the authors

    Oxidation resistance of graphene-coated Cu and Cu/Ni alloy

    Full text link
    The ability to protect refined metals from reactive environments is vital to many industrial and academic applications. Current solutions, however, typically introduce several negative effects, including increased thickness and changes in the metal physical properties. In this paper, we demonstrate for the first time the ability of graphene films grown by chemical vapor deposition to protect the surface of the metallic growth substrates of Cu and Cu/Ni alloy from air oxidation. SEM, Raman spectroscopy, and XPS studies show that the metal surface is well protected from oxidation even after heating at 200 \degree C in air for up to 4 hours. Our work further shows that graphene provides effective resistance against hydrogen peroxide. This protection method offers significant advantages and can be used on any metal that catalyzes graphene growth

    TDR Targets: a chemogenomics resource for neglected diseases

    Get PDF
    The TDR Targets Database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development, focusing on pathogens responsible for neglected human diseases. The database integrates pathogen specific genomic information with functional data (e.g. expression, phylogeny, essentiality) for genes collected from various sources, including literature curation. This information can be browsed and queried using an extensive web interface with functionalities for combining, saving, exporting and sharing the query results. Target genes can be ranked and prioritized using numerical weights assigned to the criteria used for querying. In this report we describe recent updates to the TDR Targets database, including the addition of new genomes (specifically helminths), and integration of chemical structure, property and bioactivity information for biological ligands, drugs and inhibitors and cheminformatic tools for querying and visualizing these chemical data. These changes greatly facilitate exploration of linkages (both known and predicted) between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context

    Limits to sustained energy intake XXIV : impact of suckling behaviour on the body temperatures of lactating female mice

    Get PDF
    We would like to thank the animal house staff and all members of the Energetics group for their invaluable help at various stages throughout the project. This work was supported by Natural Environment Research Council grant (NERC, NE/C004159/1). YG was supported by a scholarship from the rotary foundation. LV was supported by a Rubicon grant from the Netherlands Scientific Organisation (NWO).Peer reviewedPublisher PD

    Disturbance of deep-sea environments induced by the M9.0 Tohoku Earthquake

    Get PDF
    The impacts of the M9.0 Tohoku Earthquake on deep-sea environment were investigated 36 and 98 days after the event. The light transmission anomaly in the deep-sea water after 36 days became atypically greater (∼35%) and more extensive (thickness ∼1500 m) near the trench axis owing to the turbulent diffusion of fresh seafloor sediment, coordinated with potential seafloor displacement. In addition to the chemical influx associated with sediment diffusion, an influx of 13C-enriched methane from the deep sub-seafloor reservoirs was estimated. This isotopically unusual methane influx was possibly triggered by the earthquake and its aftershocks that subsequently induced changes in the sub-seafloor hydrogeologic structures. The whole prokaryotic biomass and the development of specific phylotypes in the deep-sea microbial communities could rise and fall at 36 and 98 days, respectively, after the event. We may capture the snap shots of post-earthquake disturbance in deep-sea chemistry and microbial community responses

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres

    ChEMBL: a large-scale bioactivity database for drug discovery

    Get PDF
    ChEMBL is an Open Data database containing binding, functional and ADMET information for a large number of drug-like bioactive compounds. These data are manually abstracted from the primary published literature on a regular basis, then further curated and standardized to maximize their quality and utility across a wide range of chemical biology and drug-discovery research problems. Currently, the database contains 5.4 million bioactivity measurements for more than 1 million compounds and 5200 protein targets. Access is available through a web-based interface, data downloads and web services at: https://www.ebi.ac.uk/chembldb
    corecore