679 research outputs found
Properties of simulated Milky Way-mass galaxies in loose group and field environments
We test the validity of comparing simulated field disk galaxies with the
empirical properties of systems situated within environments more comparable to
loose groups, including the Milky Way's Local Group. Cosmological simulations
of Milky Way-mass galaxies have been realised in two different environment
samples: in the field and in environments with similar properties to the Local
Group. Apart from the environments of the galaxies, the samples are kept as
homogeneous as possible with equivalent ranges in last major merger time, halo
mass and halo spin. Comparison of these two samples allow for systematic
differences in the simulations to be identified. Metallicity gradients, disk
scale lengths, colours, magnitudes and age-velocity dispersion relations are
studied for each galaxy in the suite and the strength of the link between these
and environment of the galaxies is studied. The bulge-to-disk ratio of the
galaxies show that these galaxies are less spheroid dominated than many other
simulated galaxies in literature with the majority of both samples being disk
dominated. We find that secular evolution and mergers dominate the spread of
morphologies and metallicity gradients with no visible differences between the
two environment samples. In contrast with this consistency in the two samples
there is tentative evidence for a systematic difference in the velocity
dispersion-age relations of galaxies in the different environments. Loose group
galaxies appear to have more discrete steps in their velocity dispersion-age
relations. We conclude that at the current resolution of cosmological galaxy
simulations field environment galaxies are sufficiently similar to those in
loose groups to be acceptable proxies for comparison with the Milky Way
provided that a similar assembly history is considered.Comment: 16 pages, 11 figures, abstract abridged for arXiv. Accepted for
publication in Astronomy & Astrophysic
Do ultrafast exciton-polaron decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells?
All-organic-based photovoltaic solar cells have attracted considerable
attention because of their low-cost processing and short energy payback time.
In such systems the primary dissociation of an optical excitation into a pair
of photocarriers has been recently shown to be extremely rapid and efficient,
but the physical reason for this remains unclear. Here, two-dimensional
photocurrent excitation spectroscopy, a novel non-linear optical spectroscopy,
is used to probe the ultrafast coherent decay of photoexcitations into
charge-producing states in a polymer:fullerene based solar cell. The
two-dimensional photocurrent spectra are interpreted by introducing a
theoretical model for the description of the coupling of the electronic states
of the system to an external environment and to the applied laser fields. The
experimental data show no cross-peaks in the two-dimensional photocurrent
spectra, as predicted by the model for coherence times between the exciton and
the photocurrent producing states of 20\,fs or less
Risk map as a library management information dashboard: a case study in adapting a configural display
In this paper, we report on our application of Cognitive Work Analysis to create an Abstraction Hierarchy model that helps librarians identify key functional relationships for managing the overall performance of a library. By themselves, functional relationships are not as useful in providing insights into the reasons for good or poor performance. However, when these functional relationships are set against the context of system invariants and constraints, they can provide library managers information useful for diagnosis and localization of problems. We propose the Risk Map visualization technique as an information dashboard to cognitively access these functional relationships. Furthermore, when these functional relationships are portrayed over time, trends and patterns can be detected with relative ease
The properties, origin and evolution of stellar clusters in galaxy simulations and observations
We investigate the properties and evolution of star particles in two simulations of isolated spiral galaxies, and two galaxies from cosmological simulations. Unlike previous numerical work, where typically each star particle represents one ‘cluster’, for the isolated galaxies we are able to model features we term ‘clusters’ with groups of particles. We compute the spatial distribution of stars with different ages, and cluster mass distributions, comparing our findings with observations including the recent LEGUS survey. We find that spiral structure tends to be present in older (100s Myrs) stars and clusters in the simulations compared to the observations. This likely reflects differences in the numbers of stars or clusters, the strength of spiral arms, and whether the clusters are allowed to evolve. Where we model clusters with multiple particles, we are able to study their evolution. The evolution of simulated clusters tends to follow that of their natal gas clouds. Massive, dense, long-lived clouds host massive clusters, whilst short-lived clouds host smaller clusters which readily disperse. Most clusters appear to disperse fairly quickly, in basic agreement with observational findings. We note that embedded clusters may be less inclined to disperse in simulations in a galactic environment with continuous accretion of gas onto the clouds than isolated clouds and correspondingly, massive young clusters which are no longer associated with gas tend not to occur in the simulations. Caveats of our models include that the cluster densities are lower than realistic clusters, and the simplistic implementation of stellar feedback
The stellar metallicity distribution of disc galaxies and bulges in cosmological simulations
By means of high-resolution cosmological hydrodynamical simulations of Milky
Way-like disc galaxies, we conduct an analysis of the associated stellar
metallicity distribution functions (MDFs). After undertaking a kinematic
decomposition of each simulation into spheroid and disc sub-components, we
compare the predicted MDFs to those observed in the solar neighbourhood and the
Galactic bulge. The effects of the star formation density threshold are visible
in the star formation histories, which show a modulation in their behaviour
driven by the threshold. The derived MDFs show median metallicities lower by
0.2-0.3 dex than the MDF observed locally in the disc and in the Galactic
bulge. Possible reasons for this apparent discrepancy include the use of low
stellar yields and/or centrally-concentrated star formation. The dispersions
are larger than the one of the observed MDF; this could be due to simulated
discs being kinematically hotter relative to the Milky Way. The fraction of low
metallicity stars is largely overestimated, visible from the more negatively
skewed MDF with respect to the observational sample. For our fiducial Milky Way
analog, we study the metallicity distribution of the stars born "in situ"
relative to those formed via accretion (from disrupted satellites), and
demonstrate that this low-metallicity tail to the MDF is populated primarily by
accreted stars. Enhanced supernova and stellar radiation energy feedback to the
surrounding interstellar media of these pre-disrupted satellites is suggested
as an important regulator of the MDF skewness.Comment: 20 pages, 14 figures, MNRAS, accepte
Charged Particles in a 2+1 Curved Background
The coupling to a 2+1 background geometry of a quantized charged test
particle in a strong magnetic field is analyzed. Canonical operators adapting
to the fast and slow freedoms produce a natural expansion in the inverse square
root of the magnetic field strength. The fast freedom is solved to the second
order.
At any given time, space is parameterized by a couple of conjugate operators
and effectively behaves as the `phase space' of the slow freedom. The slow
Hamiltonian depends on the magnetic field norm, its covariant derivatives, the
scalar curvature and presents a peculiar coupling with the spin-connection.Comment: 22 page
Status and perspectives of short baseline studies
The study of flavor changing neutrinos is a very active field of research. I
will discuss the status of ongoing and near term experiments investigating
neutrino properties at short distances from the source. In the next few years,
the Double Chooz, RENO and Daya Bay reactor neutrino experiments will start
looking for signatures of a non-zero value of the mixing angle
with much improved sensitivities. The MiniBooNE experiment is investigating the
LSND anomaly by looking at both the and
appearance channels. Recent results on
cross section measurements will be discussed briefly.Comment: 6 pages, 2 figures, to appear in the proceedings of the 11th
International Conference on Topics in Astroparticle and Underground Physics
(TAUP 2009), Rome, Italy, 1-5 July 200
Recommendations for dealing with waste contaminated with Ebola virus: a Hazard Analysis of Critical Control Points approach
Objective To assess, within communities experiencing Ebola virus outbreaks, the risks associated with the disposal of human waste and to generate recommendations for mitigating such risks. Methods A team with expertise in the Hazard Analysis of Critical Control Points framework identified waste products from the care of individuals with Ebola virus disease and constructed, tested and confirmed flow diagrams showing the creation of such products. After listing potential hazards associated with each step in each flow diagram, the team conducted a hazard analysis, determined critical control points and made recommendations to mitigate the transmission risks at each control point. Findings The collection, transportation, cleaning and shared use of blood-soiled fomites and the shared use of latrines contaminated with blood or bloodied faeces appeared to be associated with particularly high levels of risk of Ebola virus transmission. More moderate levels of risk were associated with the collection and transportation of material contaminated with bodily fluids other than blood, shared use of latrines soiled with such fluids, the cleaning and shared use of fomites soiled with such fluids, and the contamination of the environment during the collection and transportation of blood-contaminated waste. Conclusion The risk of the waste-related transmission of Ebola virus could be reduced by the use of full personal protective equipment, appropriate hand hygiene and an appropriate disinfectant after careful cleaning. Use of the Hazard Analysis of Critical Control Points framework could facilitate rapid responses to outbreaks of emerging infectious disease
Disc heating: comparing the Milky Way with cosmological simulations
We present an analysis of a suite of simulations run with different particle- and grid-based cosmological hydrodynamical codes and compare them with observational data of the Milky Way. This is the first study to make comparisons of properties of galaxies simulated with particle- and grid-based codes. Our analysis indicates that there is broad agreement between these different modelling techniques. We study the velocity dispersion-age relation for disc stars at z= 0 and find that four of the simulations are more consistent with observations by Holmberg, Nordstroem & Andersen in which the stellar disc appears to undergo continual/secular heating. Two other simulations are in better agreement with the Quillen & Garnett observations that suggest ‘saturation' in the heating profile for young stars in the disc. None of the simulations has thin discs as old as that of the Milky Way. We also analyse the kinematics of disc stars at the time of their birth for different epochs in the galaxies' evolution and find that in some simulations old stars are born cold within the disc and are subsequently heated, while other simulations possess old stellar populations which are born relatively hot. The models which are in better agreement with observations of the Milky Way's stellar disc undergo significantly lower minor-merger/assembly activity after the last major merger, that is, once the disc has formed. All of the simulations are significantly ‘hotter' than the Milky Way disc; on top of the effects of mergers, we find a ‘floor' in the dispersion that is related to the underlying treatment of the heating and cooling of the interstellar medium, and the low density threshold which such codes use for star formation. This finding has important implications for all studies of disc heating that use hydrodynamical code
- …
