90 research outputs found

    Damage in porous media due to salt crystallization

    Get PDF
    We investigate the origins of salt damage in sandstones for the two most common salts: sodium chloride and sulfate. The results show that the observed difference in damage between the two salts is directly related to the kinetics of crystallization and the interfacial properties of the salt solutions and crystals with respect to the stone. We show that, for sodium sulfate, the existence of hydrated and anhydrous crystals and specifically their dissolution and crystallization kinetics are responsible for the damage. Using magnetic resonance imaging and optical microscopy we show that when water imbibes sodium sulfate contaminated sandstones, followed by drying at room temperature, large damage occurs in regions where pores are fully filled with salts. After partial dissolution, anhydrous sodium sulfate salt present in these regions gives rise to a very rapid growth of the hydrated phase of sulfate in the form of clusters that form on or close to the remaining anhydrous microcrystals. The rapid growth of these clusters generates stresses in excess of the tensile strength of the stone leading to the damage. Sodium chloride only forms anhydrous crystals that consequently do not cause damage in the experiments

    Recommendation of RILEM TC 271-ASC: New accelerated test procedure for the assessment of resistance of natural stone and fired-clay brick units against salt crystallization

    Get PDF
    This recommendation is devoted to testing the resistance of natural stone and fired-clay brick units against salt crystallization. The procedure was developed by the RILEM TC 271-ASC to evaluate the durability of porous building materials against salt crystallization through a laboratory method that allows for accelerated testing without compromising the reliability of the results. The new procedure is designed to replicate salt damage caused by crystallization near the surface of materials as a result of capillary transport and evaporation. A new approach is proposed that considers the presence of two stages in the salt crystallization test. In the first, the accumulation stage, salts gradually accumulate on or near the surface of the material due to evaporation. In the second, the propagation stage, damage initiates and develops due to changes in moisture content and relative humidity that trigger salt dissolution and crystallization cycles. To achieve this, two types of salt were tested, namely sodium chloride and sodium sulphate, with each salt tested separately. A methodology for assessing the salt-induced damage is proposed, which includes visual and photographical observations and measurement of material loss. The procedure has been preliminarily validated in round robin tests

    Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes

    Full text link
    Anandamide, an endogenous arachidonic acid derivative that is released from neurons and activates cannabinoid receptors, may act as a transcellular cannabimimetic messenger in the central nervous system. The biological actions of anandamide and the identity of its target cells are, however, still poorly documented. Here we show that anandamide is a potent inhibitor of gap-junction conductance and dye permeability in striatal astrocytes. This inhibitory effect is specific for anandamide as compared to co-released congeners or structural analogues, is sensitive to pertussis toxin and to protein-alkylating agents, and is neither mimicked by cannabinoid-receptor agonists nor prevented by a cannabinoid-receptor antagonist. Glutamate released from neurons evokes calcium waves in astrocytes that propagate via gap junctions, and may, in turn, activate neurons distant from their initiation sites in astrocytes. We find that anandamide blocks the propagation of astrocyte calcium waves generated by either mechanical stimulation or local glutamate application. Thus, by regulating gap-junction permeability, anandamide may control intercellular communication in astrocytes and therefore neuron-glial interactions

    Recommendation of RILEM TC 271-ASC: New accelerated test procedure for the assessment of resistance of natural stone and fired-clay brick units against salt crystallization

    Get PDF
    This recommendation is devoted to testing the resistance of natural stone and fired-clay brick units against salt crystallization. The procedure was developed by the RILEM TC 271-ASC to evaluate the durability of porous building materials against salt crystallization through a laboratory method that allows for accelerated testing without compromising the reliability of the results. The new procedure is designed to replicate salt damage caused by crystallization near the surface of materials as a result of capillary transport and evaporation. A new approach is proposed that considers the presence of two stages in the salt crystallization test. In the first, the accumulation stage, salts gradually accumulate on or near the surface of the material due to evaporation. In the second, the propagation stage, damage initiates and develops due to changes in moisture content and relative humidity that trigger salt dissolution and crystallization cycles. To achieve this, two types of salt were tested, namely sodium chloride and sodium sulphate, with each salt tested separately. A methodology for assessing the salt-induced damage is proposed, which includes visual and photographical observations and measurement of material loss. The procedure has been preliminarily validated in round robin tests
    • …
    corecore