We investigate the origins of salt damage in sandstones for the two most
common salts: sodium chloride and sulfate. The results show that the observed
difference in damage between the two salts is directly related to the kinetics
of crystallization and the interfacial properties of the salt solutions and
crystals with respect to the stone. We show that, for sodium sulfate, the
existence of hydrated and anhydrous crystals and specifically their dissolution
and crystallization kinetics are responsible for the damage. Using magnetic
resonance imaging and optical microscopy we show that when water imbibes sodium
sulfate contaminated sandstones, followed by drying at room temperature, large
damage occurs in regions where pores are fully filled with salts. After partial
dissolution, anhydrous sodium sulfate salt present in these regions gives rise
to a very rapid growth of the hydrated phase of sulfate in the form of clusters
that form on or close to the remaining anhydrous microcrystals. The rapid
growth of these clusters generates stresses in excess of the tensile strength
of the stone leading to the damage. Sodium chloride only forms anhydrous
crystals that consequently do not cause damage in the experiments