651 research outputs found

    Shock waves in thermal lensing

    Full text link
    We review experimental investigation on spatial shock waves formed by the self-defocusing action of a laser beam propagation in a disordered thermal nonlinear media.Comment: 9 pages, 12 figure

    Bernoulli type polynomials on Umbral Algebra

    Full text link
    The aim of this paper is to investigate generating functions for modification of the Milne-Thomson's polynomials, which are related to the Bernoulli polynomials and the Hermite polynomials. By applying the Umbral algebra to these generating functions, we provide to deriving identities for these polynomials

    Coronal hole boundaries at small scales: III. EIS and SUMER views

    Full text link
    We report on the plasma properties of small-scale transient events identified in the quiet Sun, coronal holes and their boundaries. We use spectroscopic co-observations from SUMER/SoHO and EIS/Hinode combined with high cadence imaging data from XRT/Hinode. We measure Doppler shifts using single and multiple Gauss fits of transition region and coronal lines as well as electron densities and temperatures. We combine co-temporal imaging and spectroscopy to separate brightening expansions from plasma flows. The transient brightening events in coronal holes and their boundaries were found to be very dynamical producing high density outflows at large speeds. Most of these events represent X-ray jets from pre-existing or newly emerging coronal bright points at X-ray temperatures. The average electron density of the jets is logNe ~ 8.76 cm^-3 while in the flaring site it is logNe ~ 9.51 cm^-3. The jet temperatures reach a maximum of 2.5 MK but in the majority of the cases the temperatures do not exceed 1.6 MK. The footpoints of jets have temperatures of a maximum of 2.5 MK though in a single event scanned a minute after the flaring the measured temperature was 12 MK. The jets are produced by multiple microflaring in the transition region and corona. Chromospheric emission was only detected in their footpoints and was only associated with downflows. The Doppler shift measurements in the quiet Sun transient brightenings confirmed that these events do not produce jet-like phenomena. The plasma flows in these phenomena remain trapped in closed loops.Comment: 16 pages, accepted for publication in A&

    Evolution of microflares associated with bright points in coronal holes and in quiet regions

    Full text link
    We aim to find similarities and differences between microflares at coronal bright points found in quiet regions and coronal holes, and to study their relationship with large scale flares. Coronal bright points in quiet regions and in coronal holes were observed with Hinode/EIS using the same sequence. Microflares associated with bright points are identified from the X-ray lightcurve. The temporal variation of physical properties was traced in the course of microflares. The lightcurves of microflares indicated an impulsive peak at hot emission followed by an enhancement at cool emission, which is compatible with the cooling model of flare loops. The density was found to increase at the rise of the impulsive peak, supporting chromospheric evaporation models. A notable difference is found in the surroundings of microflares; diffuse coronal jets are produced above microflares in coronal holes while coronal dimmings are formed in quiet regions. The microflares associated with bright points share common characteristics to active region flares. The difference in the surroundings of microflares are caused by open and closed configurations of the pre-existing magnetic field.Comment: 9 pages, 11 figures, accepted for publication in A&

    Coronal Temperature Diagnostic Capability of the Hinode/X-Ray Telescope Based on Self-Consistent Calibration

    Full text link
    The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager that observes the solar corona with unprecedentedly high angular resolution (consistent with its 1" pixel size). XRT has nine X-ray analysis filters with different temperature responses. One of the most significant scientific features of this telescope is its capability of diagnosing coronal temperatures from less than 1 MK to more than 10 MK, which has never been accomplished before. To make full use of this capability, accurate calibration of the coronal temperature response of XRT is indispensable and is presented in this article. The effect of on-orbit contamination is also taken into account in the calibration. On the basis of our calibration results, we review the coronal-temperature-diagnostic capability of XRT

    On the ultraviolet signatures of small scale heating in coronal loops

    Full text link
    Studying the statistical properties of solar ultraviolet emission lines could provide information about the nature of small scale coronal heating. We expand on previous work to investigate these properties. We study whether the predicted statistical distribution of ion emission line intensities produced by a specified heating function is affected by the isoelectronic sequence to which the ion belongs, as well as the characteristic temperature at which it was formed. Particular emphasis is placed on the strong resonance lines belonging to the lithium isoelectronic sequence. Predictions for emission lines observed by existing space-based UV spectrometers are given. The effects on the statistics of a line when observed with a wide-band imaging instrument rather than a spectrometer are also investigated. We use a hydrodynamic model to simulate the UV emission of a loop system heated by nanoflares on small, spatially unresolved scales. We select lines emitted at similar temperatures but belonging to different isoelectronic groups: Fe IX and Ne VIII, Fe XII and Mg X, Fe XVII, Fe XIX and Fe XXIV. Our simulations confirm previous results that almost all lines have an intensity distribution that follows a power-law, in a similar way to the heating function. However, only the high temperature lines best preserve the heating function's power law index (Fe XIX being the best ion in the case presented here). The Li isoelectronic lines have different statistical properties with respect to the lines from other sequences, due to the extended high temperature tail of their contribution functions. However, this is not the case for Fe XXIV which may be used as a diagnostic of the coronal heating function. We also show that the power-law index of the heating function is effectively preserved when a line is observed by a wide-band imaging instrument rather than a spectromenter

    Chromospheric Magnetic Reconnection caused by Photospheric Flux Emergence: Implications for Jet-like Events Formation

    Full text link
    Magnetic reconnection in the low atmosphere, e.g. chromosphere, is investigated in various physical environments. Its implications for the origination of explosive events (small--scale jets) are discussed. A 2.5-dimensional resistive magnetohydrodynamic (MHD) model in Cartesian coordinates is used. It is found that the temperature and velocity of the outflow jets as a result of magnetic reconnection are strongly dependent on the physical environments, e.g. the magnitude of the magnetic field strength and the plasma density. If the magnetic field strength is weak and the density is high, the temperature of the jets is very low (~10,000 K) as well as its velocity (~40 km/s). However, if environments with stronger magnetic field strength (20 G) and smaller density (electron density Ne=2x10^{10} cm^{-3}) are considered, the outflow jets reach higher temperatures of up to 600,000 K and a line-of-sight velocity of up to 130 km/s which is comparable with the observational values of jet-like events.Comment: 9 pages, 8 figures, 1 table, submitted to A&

    Signatures of Coronal Heating Mechanisms

    Full text link
    Alfven waves created by sub-photospheric motions or by magnetic reconnection in the low solar atmosphere seem good candidates for coronal heating. However, the corona is also likely to be heated more directly by magnetic reconnection, with dissipation taking place in current sheets. Distinguishing observationally between these two heating mechanisms is an extremely difficult task. We perform 1.5-dimensional MHD simulations of a coronal loop subject to each type of heating and derive observational quantities that may allow these to be differentiated.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Explosive events - swirling transition region jets

    Full text link
    In this paper, we extend our earlier work to provide additional evidence for an alternative scenario to explain the nature of so-called `explosive events'. The bi-directed, fast Doppler motion of explosive events observed spectroscopically in the transition region emission is classically interpreted as a pair of bidirectional jets moving upward and downward from a reconnection site. We discuss the problems of such a model. In our previous work, we focused basically on the discrepancy of fast Doppler motion without detectable motion in the image plane. We now suggest an alternative scenario for the explosive events, based on our observations of spectral line tilts and bifurcated structure in some events. Both features are indicative of rotational motion in narrow structures. We explain the bifurcation as the result of rotation of hollow cylindrical structures and demonstrate that such a sheath model can also be applied to explain the nature of the puzzling `explosive events'. We find that the spectral tilt, the lack of apparent motion, the bifurcation, and a rapidly growing number of direct observations support an alternative scenario of linear, spicular-sized jets with a strong spinning motion.Comment: 9 pages, 3 figures, accepted for publication in Solar Physic

    Modeling CHANDRA Low Energy Transmission Grating Spectrometer Observations of Classical Novae with PHOENIX. I. V4743 Sagittarii

    Full text link
    We use the PHOENIX code package to model the X-ray spectrum of Nova V4743 Sagittarii observed with the LETGS onboard the Chandra satellite on March 2003. Our atmosphere models are 1D spherical, expanding, line blanketed, and in full NLTE. To analyze nova atmospheres and related systems with an underlying nuclear burning envelope at X-ray wavelengths, it was necessary to update the code with new microphysics, as discussed in this paper. We demonstrate that the X-ray emission is dominated by thermal bremsstrahlung and that the hard X-rays are dominated by Fe and N absorption. The best fit to the observation is provided at a temperature of T_eff = 5.8 x 10^5 K, with L_bol = 50 000 L_sun. The models are calculated for solar abundances. It is shown that the models can be used to determine abundances in the nova ejecta.Comment: 8 pages, 6 figures, accepted for publication in Astronomy & Astrophysic
    • …
    corecore