113 research outputs found

    IR ion spectroscopy in a combined approach with MS/MS and IM-MS to discriminate epimeric anthocyanin glycosides (cyanidin 3-O-glucoside and -galactoside)

    Get PDF
    Anthocyanins are widespread in plants and flowers, being responsible for their different colouring. Two representative members of this family have been selected, cyanidin 3-O-β-glucopyranoside and 3-O-β-galactopyranoside, and probed by mass spectrometry based methods, testing their performance in discriminating between the two epimers. The native anthocyanins, delivered into the gas phase by electrospray ionization, display a comparable drift time in ion mobility mass spectrometry (IM-MS) and a common fragment, corresponding to loss of the sugar moiety, in their collision induced dissociation (CID) pattern. However, the IR multiple photon dissociation (IRMPD) spectra in the fingerprint range show a feature particularly evident in the case of the glucoside. This signature is used to identify the presence of cyanidin 3-O-β-glucopyranoside in a natural extract of pomegranate. In an effort to increase any differentiation between the two epimers, aluminum complexes were prepared and sampled for elemental composition by FT-ICR-MS. CID experiments now display an extensive fragmentation pattern, showing few product ions peculiar to each species. More noteworthy is the IRMPD behavior in the OH stretching range showing significant differences in the spectra of the two epimers. DFT calculations allow to interpret the observed distinct bands due to a varied network of hydrogen bonding and relative conformer stability

    The major allergen of the Parietaria pollen contains an LPS-binding region with immuno-modulatory activity

    Get PDF
    Background: The major allergens in Parietaria pollen, Par j 1 and Par j 2, have been identified as lipid transfer proteins. The family of the Par j 1 allergens is composed of two isoforms, which differ by the presence of a 37 amino acid peptide (Par37) exclusive to the Par j 1.0101 isoform. The goal of this study was to elucidate the biological properties of the Par37 peptide. Methods: In silico analysis, spectrofluorimetric experiments and in vitro cell culture assays were used to identify the biological properties of Par37. In addition, a mouse model of sensitization was used to study the influence of Par37 in the murine immune response. Results: In silico analysis predicted that Par37 displays characteristics of a host defence peptide. Spectrofluorimetric analysis, real-time PCR and ELISA assays demonstrated that Par37 possesses an LPS-binding activity influencing cell signalling in vitro. In RAW264.7 cells, LPS-induced IL-6 and TNF-a transcription and translation were inhibited after preincubation with Par37. Consistent with these data, inhibition of IFN-c secretion was observed in murine spleen cells and in human PBMC. Finally, mice immunized with the two Par j 1 isoforms differing in the presence or absence of the Par37 peptide showed different immunological behaviours in vivo. Conclusions: This study demonstrates that the Par j 1.0101 allergen displays LPSbinding activity due to the presence of a 37 amino acid COOH-terminal region and that this region is capable of influencing cytokine and antibody responses in vitro and in vivo

    Moss survival through in situ cryptobiosis after six centuries of glacier burial

    Get PDF
    Cryptobiosis is a reversible ametabolic state of life characterized by the ceasing of all metabolic processes, allowing survival of periods of intense adverse conditions. Here we show that 1) entire moss individuals, dated by 14C, survived through cryptobiosis during six centuries of cold-based glacier burial in Antarctica, 2) after re-exposure due to glacier retreat, instead of dying (due to high rates of respiration supporting repair processes), at least some of these mosses were able to return to a metabolically active state and remain alive. Moss survival was assessed through growth experiments and, for the first time, through vitality measurements. Future investigations on the genetic pathways involved in cryptobiosis and the subsequent recovery mechanisms will provide key information on their applicability to other systematic groups, with implications for fields as divergent as medicine, biodiversity conservation, agriculture and space exploration

    SHARPIN Is Essential for Cytokine Production, NF-κB Signaling, and Induction of Th1 Differentiation by Dendritic Cells

    Get PDF
    Spontaneous mutations of the Sharpin (SHANK-associated RH domain-interacting protein, other aliases: Rbckl1, Sipl1) gene in mice result in systemic inflammation that is characterized by chronic proliferative dermatitis and dysregulated secretion of T helper1 (Th1) and Th2 cytokines. The cellular and molecular mechanisms underlying this inflammatory phenotype remain elusive. Dendritic cells may contribute to the initiation and progression of the phenotype of SHARPIN-deficient mice because of their pivotal role in innate and adaptive immunity. Here we show by flow cytometry that SHARPIN- deficiency did not alter the distribution of different DC subtypes in the spleen. In response to TOLL-like receptor (TLR) agonists LPS and poly I:C, cultured bone marrow-derived dendritic cells (BMDC) from WT and mutant mice exhibited similar increases in expression of co-stimulatory molecules CD40, CD80, and CD86. However, stimulated SHARPIN-deficient BMDC had reduced transcription and secretion of pro-inflammatory mediators IL6, IL12P70, GMCSF, and nitric oxide. Mutant BMDC had defective activation of NF-κB signaling, whereas the MAPK1/3 (ERK1/2) and MAPK11/12/13/14 (p38 MAP kinase isoforms) and TBK1 signaling pathways were intact. A mixed lymphocyte reaction showed that mutant BMDC only induced a weak Th1 immune response but stimulated increased Th2 cytokine production from allogeneic naïve CD4+ T cells. In conclusion, loss of Sharpin in mice significantly affects the immune function of DC and this may partially account for the systemic inflammation and Th2-biased immune response

    A Key Role of Dendritic Cells in Probiotic Functionality

    Get PDF
    BACKGROUND: Disruption of the intestinal homeostasis and tolerance towards the resident microbiota is a major mechanism involved in the development of inflammatory bowel disease. While some bacteria are inducers of disease, others, known as probiotics, are able to reduce inflammation. Because dendritic cells (DCs) play a central role in regulating immune responses and in inducing tolerance, we investigated their role in the anti-inflammatory potential of probiotic lactic acid bacteria. METHODOLOGY/PRINCIPAL FINDINGS: Selected LAB strains, while efficiently taken up by DCs in vitro, induced a partial maturation of the cells. Transfer of probiotic-treated DCs conferred protection against 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. Protection was associated with a reduction of inflammatory scores and colonic expression of pro-inflammatory genes, while a high local expression of the immunoregulatory enzyme indolamine 2, 3 dioxgenase (IDO) was observed. The preventive effect of probiotic-pulsed DCs required not only MyD88-, TLR2- and NOD2-dependent signaling but also the induction of CD4+ CD25+ regulatory cells in an IL-10-independent pathway. CONCLUSIONS/SIGNIFICANCE: Altogether, these results suggest that selected probiotics can stimulate DC regulatory functions by targeting specific pattern-recognition receptors and pathways. The results not only emphasize the role of DCs in probiotic immune interactions, but indicate a possible role in immune-intervention therapy for IBD

    Impact of gastrointestinal side effects on patients’ reported quality of life trajectories after radiotherapy for prostate cancer: Data from the prospective, observational pros-it CNR study

    Get PDF
    Radiotherapy (RT) represents an important therapeutic option for the treatment of localized prostate cancer. The aim of the current study is to examine trajectories in patients’ reported quality of life (QoL) aspects related to bowel function and bother, considering data from the PROState cancer monitoring in ITaly from the National Research Council (Pros-IT CNR) study, analyzed with growth mixture models. Data for patients who underwent RT, either associated or not associated with androgen deprivation therapy, were considered. QoL outcomes were assessed over a 2-year period from the diagnosis, using the Italian version of the University of California Los Angeles-Prostate Cancer Index (Italian-UCLA-PCI). Three trajectories were identified for the bowel function; having three or more comorbidities and the use of 3D-CRT technique for RT were associated with the worst trajectory (OR = 3.80, 95% CI 2.04–7.08; OR = 2.17, 95% CI 1.22–3.87, respectively). Two trajectories were identified for the bowel bother scores; diabetes and the non-Image guided RT method were associated with being in the worst bowel bother trajectory group (OR = 1.69, 95% CI 1.06–2.67; OR = 2.57, 95% CI 1.70–3.86, respectively). The findings from this study suggest that the absence of comorbidities and the use of intensity modulated RT techniques with image guidance are related with a better tolerance to RT in terms of bowel side effects

    Subcellular specificity of cannabinoid effects in striatonigral circuits

    Get PDF
    Recent advances in neuroscience have positioned brain circuits as key units in controlling behavior, implying that their positive or negative modulation necessarily leads to specific behavioral outcomes. However, emerging evidence suggests that the activation or inhibition of specific brain circuits can actually produce multimodal behavioral outcomes. This study shows that activation of a receptor at different subcellular locations in the same neuronal circuit can determine distinct behaviors. Pharmacological activation of type 1 cannabinoid (CB1) receptors in the striatonigral circuit elicits both antinociception and catalepsy in mice. The decrease in nociception depends on the activation of plasma membrane-residing CB1 receptors (pmCB1), leading to the inhibition of cytosolic PKA activity and substance P release. By contrast, mitochondrial-associated CB1 receptors (mtCB1) located at the same terminals mediate cannabinoid-induced catalepsy through the decrease in intra-mitochondrial PKA-dependent cellular respiration and synaptic transmission. Thus, subcellular-specific CB1 receptor signaling within striatonigral circuits determines multimodal control of behavior
    • …
    corecore