3,502 research outputs found

    On the evolution of the entropy and pressure profiles in X-ray luminous galaxy clusters at z > 0.4

    Get PDF
    Galaxy clusters are the most recent products of hierarchical accretion over cosmological scales. The gas accreted from the cosmic field is thermalized inside the cluster halo. Gas entropy and pressure are expected to have a self-similar behaviour with their radial distribution following a power law and a generalized Navarro-Frenk-White profile, respectively. This has been shown also in many different hydrodynamical simulations. We derive the spatially-resolved thermodynamical properties of 47 X-ray galaxy clusters observed with Chandra in the redshift range 0.4 < z < 1.2, the largest sample investigated so far in this redshift range with X-rays spectroscopy, with a particular care in reconstructing the gas entropy and pressure radial profiles. We search for deviation from the self-similar behaviour and look for possible evolution with redshift. The entropy and pressure profiles lie very close to the baseline prediction from gravitational structure formation. We show that these profiles deviate from the baseline prediction as function of redshift, in particular at z > 0.75, where, in the central regions, we observe higher values of the entropy (by a factor of 2.2) and systematically lower estimates (by a factor of 2.5) of the pressure. The effective polytropic index, which retains informations about the thermal distribution of the gas, shows a slight linear positive evolution with the redshift and the concentration of the dark matter distribution. A prevalence of non-cool-core, disturbed systems, as we observe at higher redshifts, can explain such behaviours.Comment: 14 pages, 18 figures, accepted for publication by A&

    Nonlinear feedback oscillations in resonant tunneling through double barriers

    Full text link
    We analyze the dynamical evolution of the resonant tunneling of an ensemble of electrons through a double barrier in the presence of the self-consistent potential created by the charge accumulation in the well. The intrinsic nonlinearity of the transmission process is shown to lead to oscillations of the stored charge and of the transmitted and reflected fluxes. The dependence on the electrostatic feedback induced by the self-consistent potential and on the energy width of the incident distribution is discussed.Comment: 10 pages, TeX, 5 Postscript figure

    Stellar Mass to Halo Mass Scaling Relation for X-ray Selected Low Mass Galaxy Clusters and Groups out to Redshift z1z\approx1

    Full text link
    We present the stellar mass-halo mass scaling relation for 46 X-ray selected low-mass clusters or groups detected in the XMM-BCS survey with masses 2×1013MM5002.5×1014M2\times10^{13}M_{\odot}\lesssim M_{500}\lesssim2.5\times10^{14}M_{\odot} at redshift 0.1z1.020.1\le z \le1.02. The cluster binding masses M500M_{500} are inferred from the measured X-ray luminosities \Lx, while the stellar masses MM_{\star} of the galaxy populations are estimated using near-infrared imaging from the SSDF survey and optical imaging from the BCS survey. With the measured \Lx\ and stellar mass MM_{\star}, we determine the best fit stellar mass-halo mass relation, accounting for selection effects, measurement uncertainties and the intrinsic scatter in the scaling relation. The resulting mass trend is MM5000.69±0.15M_{\star}\propto M_{500}^{0.69\pm0.15}, the intrinsic (log-normal) scatter is σlnMM500=0.360.06+0.07\sigma_{\ln M_{\star}|M_{500}}=0.36^{+0.07}_{-0.06}, and there is no significant redshift trend M(1+z)0.04±0.47M_{\star}\propto (1+z)^{-0.04\pm0.47}, although the uncertainties are still large. We also examine MM_{\star} within a fixed projected radius of 0.50.5~Mpc, showing that it provides a cluster binding mass proxy with intrinsic scatter of 93%\approx93\% (1σ\sigma in M500M_{500}). We compare our M=M(M500,z)M_{\star}=M_{\star}(M_{500}, z) scaling relation from the XMM-BCS clusters with samples of massive, SZE-selected clusters (M5006×1014MM_{500}\approx6\times10^{14}M_{\odot}) and low mass NIR-selected clusters (M5001014MM_{500}\approx10^{14}M_{\odot}) at redshift 0.6z1.30.6\lesssim z \lesssim1.3. After correcting for the known mass measurement systematics in the compared samples, we find that the scaling relation is in good agreement with the high redshift samples, suggesting that for both groups and clusters the stellar content of the galaxy populations within R500R_{500} depends strongly on mass but only weakly on redshift out to z1z\approx1.Comment: 15 pages, 10 figures. Accepted for publication in MNRA

    Some remarks on the chemical potential of a system in an external field

    Get PDF
    The chemical potential change provides a criterion for predicting the spontaneity of any physical and chemical process. If asked to calculate the chemical potential change of a system in which several forces vary, a student might find the task quite complicate at first glance. However, the chemical potential is a state function. This property permits a precise definition of the contribution of each force to the chemical potential when all other relevant parameters are kept constant. The total chemical potential change can easily be calculated by summing up the above contributions. After a brief review of the role played by some parameters of the system, like activity (a) of the components, temperature (T), pressure (p) and surface tension (gamma), as well as of external fields, i.e. gravitational (Mgh), centrifugal (Mcp) and electric field (Fz(i) Phi), an equation for the computation of the chemical potential (mu) including all the above contributes is reported:-, where refers not only to p = p degrees = 1 bar but also to a chosen value of T, h, rho, Phi and r. Finally, applicative examples are illustrated.The chemical potential change provides a criterion for predicting the spontaneity of any physical and chemical process. If asked to calculate the chemical potential change of a system in which several forces vary, a student might find the task quite complicate at first glance. However, the chemical potential is a state function. This property permits a precise definition of the contribution of each force to the chemical potential when all other relevant parameters are kept constant. The total chemical potential change can easily be calculated by summing up the above contributions. After a brief review of the role played by some parameters of the system, like activity ( of the components, temperature (T), pressure (p) and surface tension (), as well as of external fields, i.e. gravitational (ℎ, centrifugal () and electric field (Φ), an equation for the computation of the chemical potential (µ) including all the above contributes is reported: °′ ° ° ℎ Φ 2 , where ° refers not only to p = p° =1 bar but also to a chosen value of T, h, ρ, Φ and r. Finally, applicative examples are illustrated

    Assessment of poststress left ventricular ejection fraction by gated SPECT: comparison with equilibrium radionuclide angiocardiography

    Get PDF
    PURPOSE: We compared left ventricular (LV) ejection fraction obtained by gated SPECT with that obtained by equilibrium radionuclide angiocardiography in a large cohort of patients. METHODS: Within 1 week, 514 subjects with suspected or known coronary artery disease underwent same-day stress-rest (99m)Tc-sestamibi gated SPECT and radionuclide angiocardiography. For both studies, data were acquired 30 min after completion of exercise and after 3 h rest. RESULTS: In the overall study population, a good correlation between ejection fraction measured by gated SPECT and by radionuclide angiocardiography was observed at rest (r=0.82, p<0.0001) and after stress (r=0.83, p<0.0001). In Bland-Altman analysis, the mean differences in ejection fraction (radionuclide angiocardiography minus gated SPECT) were -0.6% at rest and 1.7% after stress. In subjects with normal perfusion (n=362), a good correlation between ejection fraction measured by gated SPECT and by radionuclide angiocardiography was observed at rest (r=0.72, p<0.0001) and after stress (r=0.70, p<0.0001) and the mean differences in ejection fraction were -0.9% at rest and 1.4% after stress. Also in patients with abnormal perfusion (n=152), a good correlation between the two techniques was observed both at rest (r=0.89, p<0.0001) and after stress (r=0.90, p<0.0001) and the mean differences in ejection fraction were 0.1% at rest and 2.5% after stress. CONCLUSION: In a large study population, a good agreement was observed in the evaluation of LV ejection fraction between gated SPECT and radionuclide angiocardiography. However, in patients with perfusion abnormalities, a slight underestimation in poststress LV ejection fraction was observed using gated SPECT as compared to equilibrium radionuclide angiocardiography

    Wild and traditional barley genomic resources as a tool for abiotic stress tolerance and biotic relations

    Get PDF
    Barley (Hordeum vulgare L.) is one of the main crops cultivated all over the world. As for other cereals, throughout the centuries barley was subjected by human breeding to genetic erosion phenomena, which guaranteed improved yields in organized (and then mechanized) agriculture; on the other hand, this selection weakened the ability of barley to survive under adverse environments. Currently, it is clear that climate change requires an urgent availability of crop varieties able to grow under stress conditions, namely limited irrigation, salinity, high temperatures, and other stresses. In this context, an important role could be played by wild relatives and landraces selected by farmers, particularly in specific field areas and/or climatic conditions. In this review, we investigated the origin of barley and the potentialities of wild varieties and landraces in different contexts, and their resilience to abiotic stress. The data obtained from Next Generation Sequencing technologies were examined to highlight the critical aspects of barley evolution and the most important features for abiotic stress tolerance. Furthermore, the potential of appropriate mycorrhiza is discussed under the view of the essential role played by these symbioses in field crops. The abilities of specific barley wild varieties and landraces may represent novel opportunities and suggest innovative strategies for the improvement of abiotic tolerance in crops and particularly in barley

    Asymmetric double barrier resonant tunneling structures with improved characteristics

    Full text link
    We present a self-consistent calculation, based on the global coherent tunnelling model, and show that structural asymmetry of double barrier resonant tunnelling structures significantly modifies the current-voltage characteristics compared to the symmetric structures. In particular, a suitably designed asymmetric structure can produce much larger peak current and absolute value of the negative differential conductivity than its commonly used symmetric counterpart.Comment: 1 paper, 3 figure
    corecore