Galaxy clusters are the most recent products of hierarchical accretion over
cosmological scales. The gas accreted from the cosmic field is thermalized
inside the cluster halo. Gas entropy and pressure are expected to have a
self-similar behaviour with their radial distribution following a power law and
a generalized Navarro-Frenk-White profile, respectively. This has been shown
also in many different hydrodynamical simulations. We derive the
spatially-resolved thermodynamical properties of 47 X-ray galaxy clusters
observed with Chandra in the redshift range 0.4 < z < 1.2, the largest sample
investigated so far in this redshift range with X-rays spectroscopy, with a
particular care in reconstructing the gas entropy and pressure radial profiles.
We search for deviation from the self-similar behaviour and look for possible
evolution with redshift. The entropy and pressure profiles lie very close to
the baseline prediction from gravitational structure formation. We show that
these profiles deviate from the baseline prediction as function of redshift, in
particular at z > 0.75, where, in the central regions, we observe higher values
of the entropy (by a factor of 2.2) and systematically lower estimates (by a
factor of 2.5) of the pressure. The effective polytropic index, which retains
informations about the thermal distribution of the gas, shows a slight linear
positive evolution with the redshift and the concentration of the dark matter
distribution. A prevalence of non-cool-core, disturbed systems, as we observe
at higher redshifts, can explain such behaviours.Comment: 14 pages, 18 figures, accepted for publication by A&