481 research outputs found
Vertical Field Effect Transistor based on Graphene-WS2 Heterostructures for flexible and transparent electronics
The celebrated electronic properties of graphene have opened way for
materials just one-atom-thick to be used in the post-silicon electronic era. An
important milestone was the creation of heterostructures based on graphene and
other two-dimensional (2D) crystals, which can be assembled in 3D stacks with
atomic layer precision. These layered structures have already led to a range of
fascinating physical phenomena, and also have been used in demonstrating a
prototype field effect tunnelling transistor - a candidate for post-CMOS
technology. The range of possible materials which could be incorporated into
such stacks is very large. Indeed, there are many other materials where layers
are linked by weak van der Waals forces, which can be exfoliated and combined
together to create novel highly-tailored heterostructures. Here we describe a
new generation of field effect vertical tunnelling transistors where 2D
tungsten disulphide serves as an atomically thin barrier between two layers of
either mechanically exfoliated or CVD-grown graphene. Our devices have
unprecedented current modulation exceeding one million at room temperature and
can also operate on transparent and flexible substrates
Singular-phase nanooptics: towards label-free single molecule detection
Non-trivial topology of phase is crucial for many important physics phenomena
such as, for example, the Aharonov-Bohm effect 1 and the Berry phase 2. Light
phase allows one to create "twisted" photons 3, 4 , vortex knots 5,
dislocations 6 which has led to an emerging field of singular optics relying on
abrupt phase changes 7. Here we demonstrate the feasibility of singular
visible-light nanooptics which exploits the benefits of both plasmonic field
enhancement and non-trivial topology of light phase. We show that properly
designed plasmonic nanomaterials exhibit topologically protected singular phase
behaviour which can be employed to radically improve sensitivity of detectors
based on plasmon resonances. By using reversible hydrogenation of graphene 8
and a streptavidin-biotin test 9, we demonstrate areal mass sensitivity at a
level of femto-grams per mm2 and detection of individual biomolecules,
respectively. Our proof-of-concept results offer a way towards simple and
scalable single-molecular label-free biosensing technologies.Comment: 19 pages, 4 figure
Atomically thin boron nitride: a tunnelling barrier for graphene devices
We investigate the electronic properties of heterostructures based on
ultrathin hexagonal boron nitride (h-BN) crystalline layers sandwiched between
two layers of graphene as well as other conducting materials (graphite, gold).
The tunnel conductance depends exponentially on the number of h-BN atomic
layers, down to a monolayer thickness. Exponential behaviour of I-V
characteristics for graphene/BN/graphene and graphite/BN/graphite devices is
determined mainly by the changes in the density of states with bias voltage in
the electrodes. Conductive atomic force microscopy scans across h-BN terraces
of different thickness reveal a high level of uniformity in the tunnel current.
Our results demonstrate that atomically thin h-BN acts as a defect-free
dielectric with a high breakdown field; it offers great potential for
applications in tunnel devices and in field-effect transistors with a high
carrier density in the conducting channel.Comment: 7 pages, 5 figure
Light-emitting diodes by band-structure engineering in van der Waals heterostructures
The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals.The paradigm proved itself extremely versatile and led to rapid demonstration
of tunnelling diodes with negative di�erential resistance tunnelling transistors photovoltaic devices and so on. Here, we take the complexity and functionality of such van der Waals heterostructures to the next level by introducing quantum wells (QWs) engineered with one atomic plane precision. We describe light-emitting diodes (LEDs) made by stacking metallic graphene, insulating hexagonal boron nitride and various semiconducting monolayers into complex but carefully designed sequences. Our first devices already exhibit an extrinsic quantum e�ciency of nearly 10% and the emission can be tuned over a wide range of frequencies by appropriately choosing and combining 2D semiconductors (monolayers of transition metal dichalcogenides). By preparing the heterostructures on elastic and transparent substrates, we show that they can also provide the basis for flexible and semi-transparent electronics. The range of functionalities for the demonstrated heterostructures is expected to grow further on increasing the number of available 2D crystals and improving their electronic quality
On Switch-Reference Phenomena in Kolyma Yukaghir
「環太平洋の言語」成果報告書A2-002ELPR publication series A2-00
Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices
By stacking various two-dimensional (2D) atomic crystals [1] on top of each
other, it is possible to create multilayer heterostructures and devices with
designed electronic properties [2-5]. However, various adsorbates become
trapped between layers during their assembly, and this not only affects the
resulting quality but also prevents the formation of a true artificial layered
crystal upheld by van der Waals interaction, creating instead a laminate glued
together by contamination. Transmission electron microscopy (TEM) has shown
that graphene and boron nitride monolayers, the two best characterized 2D
crystals, are densely covered with hydrocarbons (even after thermal annealing
in high vacuum) and exhibit only small clean patches suitable for atomic
resolution imaging [6-10]. This observation seems detrimental for any realistic
prospect of creating van der Waals materials and heterostructures with
atomically sharp interfaces. Here we employ cross sectional TEM to take a side
view of several graphene-boron nitride heterostructures. We find that the
trapped hydrocarbons segregate into isolated pockets, leaving the interfaces
atomically clean. Moreover, we observe a clear correlation between interface
roughness and the electronic quality of encapsulated graphene. This work proves
the concept of heterostructures assembled with atomic layer precision and
provides their first TEM images
Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure
Ultrafast electron thermalization - the process leading to Auger
recombination, carrier multiplication via impact ionization and hot carrier
luminescence - occurs when optically excited electrons in a material undergo
rapid electron-electron scattering to redistribute excess energy and reach
electronic thermal equilibrium. Due to extremely short time and length scales,
the measurement and manipulation of electron thermalization in nanoscale
devices remains challenging even with the most advanced ultrafast laser
techniques. Here, we overcome this challenge by leveraging the atomic thinness
of two-dimensional van der Waals (vdW) materials in order to introduce a highly
tunable electron transfer pathway that directly competes with electron
thermalization. We realize this scheme in a graphene-boron nitride-graphene
(G-BN-G) vdW heterostructure, through which optically excited carriers are
transported from one graphene layer to the other. By applying an interlayer
bias voltage or varying the excitation photon energy, interlayer carrier
transport can be controlled to occur faster or slower than the intralayer
scattering events, thus effectively tuning the electron thermalization pathways
in graphene. Our findings, which demonstrate a novel means to probe and
directly modulate electron energy transport in nanoscale materials, represent
an important step toward designing and implementing novel optoelectronic and
energy-harvesting devices with tailored microscopic properties.Comment: Accepted to Nature Physic
Graphene‐based technologies for tackling COVID‐19 and future pandemics
The COVID-19 pandemic highlighted the need for rapid tools and technologies to combat highly infectious viruses. The excellent electrical, mechanical and other functional properties of graphene and graphene-like 2D materials (2DM) can be utilized to develop novel and innovative devices to tackle COVID-19 and future pandemics. Here, the authors outline how graphene and other 2DM-based technologies can be used for the detection, protection, and continuous monitoring of infectious diseases including COVID-19. The authors highlight the potential of 2DM-based biosensors in rapid testing and tracing of viruses to enable isolation of infected patients, and stop the spread of viruses. The possibilities of graphene-based wearable devices are discussed for continuous monitoring of COVID-19 symptoms. The authors also provide an overview of the personal protective equipment, and potential filtration mechanisms to separate, destroy or degrade highly infectious viruses, and the potential of graphene and other 2DM to increase their efficiency, and enhance functional and mechanical properties. Graphene and other 2DM could not only play a vital role for tackling the ongoing COVID-19 pandemic but also provide technology platforms and tools for the protection, detection and monitoring of future viral diseases
Application of Graphene within Optoelectronic Devices and Transistors
Scientists are always yearning for new and exciting ways to unlock graphene's
true potential. However, recent reports suggest this two-dimensional material
may harbor some unique properties, making it a viable candidate for use in
optoelectronic and semiconducting devices. Whereas on one hand, graphene is
highly transparent due to its atomic thickness, the material does exhibit a
strong interaction with photons. This has clear advantages over existing
materials used in photonic devices such as Indium-based compounds. Moreover,
the material can be used to 'trap' light and alter the incident wavelength,
forming the basis of the plasmonic devices. We also highlight upon graphene's
nonlinear optical response to an applied electric field, and the phenomenon of
saturable absorption. Within the context of logical devices, graphene has no
discernible band-gap. Therefore, generating one will be of utmost importance.
Amongst many others, some existing methods to open this band-gap include
chemical doping, deformation of the honeycomb structure, or the use of carbon
nanotubes (CNTs). We shall also discuss various designs of transistors,
including those which incorporate CNTs, and others which exploit the idea of
quantum tunneling. A key advantage of the CNT transistor is that ballistic
transport occurs throughout the CNT channel, with short channel effects being
minimized. We shall also discuss recent developments of the graphene tunneling
transistor, with emphasis being placed upon its operational mechanism. Finally,
we provide perspective for incorporating graphene within high frequency
devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and
the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures
Boron Nitride Monolayer: A Strain-Tunable Nanosensor
The influence of triaxial in-plane strain on the electronic properties of a
hexagonal boron-nitride sheet is investigated using density functional theory.
Different from graphene, the triaxial strain localizes the molecular orbitals
of the boron-nitride flake in its center depending on the direction of the
applied strain. The proposed technique for localizing the molecular orbitals
that are close to the Fermi level in the center of boron nitride flakes can be
used to actualize engineered nanosensors, for instance, to selectively detect
gas molecules. We show that the central part of the strained flake adsorbs
polar molecules more strongly as compared with an unstrained sheet.Comment: 20 pages, 9 figure
- …