14 research outputs found

    Evolution of microflares associated with bright points in coronal holes and in quiet regions

    Full text link
    We aim to find similarities and differences between microflares at coronal bright points found in quiet regions and coronal holes, and to study their relationship with large scale flares. Coronal bright points in quiet regions and in coronal holes were observed with Hinode/EIS using the same sequence. Microflares associated with bright points are identified from the X-ray lightcurve. The temporal variation of physical properties was traced in the course of microflares. The lightcurves of microflares indicated an impulsive peak at hot emission followed by an enhancement at cool emission, which is compatible with the cooling model of flare loops. The density was found to increase at the rise of the impulsive peak, supporting chromospheric evaporation models. A notable difference is found in the surroundings of microflares; diffuse coronal jets are produced above microflares in coronal holes while coronal dimmings are formed in quiet regions. The microflares associated with bright points share common characteristics to active region flares. The difference in the surroundings of microflares are caused by open and closed configurations of the pre-existing magnetic field.Comment: 9 pages, 11 figures, accepted for publication in A&

    A microflare with hard X-ray-correlated gyroresonance line emission at 314 MHz

    No full text
    Context. Small energy release events in the solar corona can give insights into the flare process which are regularly hidden in the complex morphology of larger events. For one case we find a narrowband radio signal well correlated with the hard X-ray flare. We investigate wether these signals are probes for the flare current sheet. Aims. We aim to establish the relation between narrowband and short-duration features (<1% of the observing frequency in the spectral range 250–340 MHz, and some 5 s until 2  min, respectively) in dynamic radio spectral diagrams and simultaneously occuring HXR bursts. Methods. We use dynamic radio spectra from the Astrophysical Institute Potsdam, HXR images of RHESSI, TRACE coronal and chromospheric images, SOHO-MDI high resolution magnetogram data, and its potential field extrapolation for the analysis of one small flare event in AR10465 on September 26, 2003. We point to similar effects in e.g. the X-class flare on November 03, 2003 to demonstrate that we are not dealing with a singular phenomenon. Results. We confirm the solar origin of the extremely narrowband radio emission. From RHESSI images and the magnetic field data we identify the probable site of the radio source as well as the HXR footpoint and the SXR flare loop emission. The flare loop is included in an ongoing change of magnetic connectivity as confirmed by TRACE images of hot coronal loops. The flare energy is stored in the nonpotential magnetic field substructure around the microflare site which is relaxed to a potential one. Conclusions. We conclude that the correlated HXR footpoint/narrowband radio emission, and the transition to a second energy release in HXR without associated radio emission are direct probes of changing magnetic connectivity during the flare. We suppose that the narrowband radio emission is due to gyroresonance radiation at the second harmonic of the local electron cyclotron frequency. It follows an upper limit of the magnetic field in the radio source volume of less than 50% of the mean potential field in the same height range. This supports the idea that the narrowband radio source is situated in the immediate surroundings of the flare current sheet

    Multi-wavelength fine structure and mass flows in solar microflares

    No full text
    Aims. We study the multi-wavelength characteristics at high spatial resolution, as well as chromospheric evaporation signatures of solar microflares. To this end, we analyze the fine structure and mass flow dynamics in the chromosphere, transition region and corona of three homologous microflares (GOES class <A9/0.7 with/without background), which occurred on July 4, 2006 in AR 10898. Methods. A multi-wavelength analysis using temporally and spatially highly resolved imaging data from the Dutch open telescope (Hα, Ca i
    corecore