3,334 research outputs found

    Discriminant analysis of solar bright points and faculae I. Classification method and center-to-limb distribution

    Full text link
    While photospheric magnetic elements appear mainly as Bright Points (BPs) at the disk center and as faculae near the limb, high-resolution images reveal the coexistence of BPs and faculae over a range of heliocentric angles. This is not explained by a "hot wall" effect through vertical flux tubes, and suggests that the transition from BPs to faculae needs to be quantitatively investigated. To achieve this, we made the first recorded attempt to discriminate BPs and faculae, using a statistical classification approach based on Linear Discriminant Analysis(LDA). This paper gives a detailed description of our method, and shows its application on high-resolution images of active regions to retrieve a center-to-limb distribution of BPs and faculae. Bright "magnetic" features were detected at various disk positions by a segmentation algorithm using simultaneous G-band and continuum information. By using a selected sample of those features to represent BPs and faculae, suitable photometric parameters were identified in order to carry out LDA. We thus obtained a Center-to-Limb Variation (CLV) of the relative number of BPs and faculae, revealing the predominance of faculae at all disk positions except close to disk center (mu > 0.9). Although the present dataset suffers from limited statistics, our results are consistent with other observations of BPs and faculae at various disk positions. The retrieved CLV indicates that at high resolution, faculae are an essential constituent of active regions all across the solar disk. We speculate that the faculae near disk center as well as the BPs away from disk center are associated with inclined fields

    Wave propagation and energy transport in the magnetic network of the Sun

    Full text link
    We investigate wave propagation and energy transport in magnetic elements, which are representatives of small scale magnetic flux concentrations in the magnetic network on the Sun. This is a continuation of earlier work by Hasan et al. (2005). The new features in the present investigation include a quantitative evaluation of the energy transport in the various modes and for different field strengths, as well as the effect of the boundary-layer thickness on wave propagation. We carry out 2-D MHD numerical simulations of magnetic flux concentrations for strong and moderate magnetic fields. Waves are excited in the tube and ambient medium by a transverse impulsive motion of the lower boundary. The nature of the modes excited depends on the value of beta. Mode conversion occurs in the moderate field case when the fast mode crosses the beta=1 contour. In the strong field case the fast mode undergoes conversion from predominantly magnetic to predominantly acoustic when waves are leaking from the interior of the flux concentration to the ambient medium. We also estimate the energy fluxes in the acoustic and magnetic modes. The main conclusions of our work are twofold: firstly, for transverse, impulsive excitation, flux tubes/sheets with strong fields are more efficient than those with weak fields in providing acoustic flux to the chromosphere. However, there is insufficient energy in the acoustic flux to balance the chromospheric radiative losses in the network, even for the strong field case. Secondly, the acoustic emission from the interface between the flux concentration and the ambient medium decreases with the width of the boundary layer.Comment: Accepted for publication in A&A, 13 pages, 10 figures. v2: improved placement and quality of figures, acknowledgments, acceptance dat

    Imaging Spectropolarimetry with IBIS II: on the fine structure of G-band bright features

    Full text link
    We present new results from first observations of the quiet solar photosphere performed through the Interferometric BIdimensional Spectrometer (IBIS) in spectropolarimetric mode. IBIS allowed us to measure the four Stokes parameters in the FeI 630.15 nm and FeI 630.25 nm lines with high spatial and spectral resolutions for 53 minutes; the polarimetric sensitivity achieved by the instrument is 0.003 the continuum intensity level. We focus on the correlation which emerges between G-band bright feature brightness and magnetic filling factor of ~ 1000 G (kG) fields derived by inverting Stokes I and V profiles. More in detail, we present the correlation first in a pixel-by-pixel study of an approximatively 3 arcsec wide bright feature (a small network patch) and then we show that such a result can be extended to all the bright features found in the dataset at any instant of the time sequence. The higher the kG filling factor associated to a feature the higher the brightness of the feature itself. Filling factors up to about 35 % are obtained for the brightest features. Considering the values of the filling factors derived from the inversion analysis of spectropolarimetric data and the brightness variation observed in G-band data we put forward an upper limit for the smallest scale over which magnetic flux concentrations in intergranular lanes produce a G-band brightness enhancement (~ 0.1''). Moreover, the brightness saturation observed for feature sizes comparable to the resolution of the observations is compatible with large G-band bright features being clusters of sub-arcsecond bright points. This conclusion deserves to be confirmed by forthcoming spectropolarimetric observations at higher spatial resolution.Comment: 10 pages, 7 figures, 1 table - Accepted for publication on Ap

    The continuum intensity as a function of magnetic field I. Active region and quiet Sun magnetic elements

    Full text link
    Small-scale magnetic fields are major contributors to the solar irradiance variations. Hence, the continuum intensity contrast of magnetic elements in the quiet Sun (QS) network and in active region (AR) plage is an essential quantity that needs to be measured reliably. By using Hinode/SP disk center data at a constant, high spatial resolution, we aim at updating results of earlier ground-based studies of contrast vs. magnetogram signal, and to look for systematic differences between AR plages and QS network. The field strength, filling factor and inclination of the field was retrieved by Milne-Eddington inversion (VFISV). As in earlier studies, we performed a pixel-by-pixel study of 630.2 nm continuum contrast vs. apparent (i.e. averaged over a pixel) longitudinal magnetic field over large fields of view in ARs and in the QS. The contrast of magnetic elements reaches larger values in the QS (on average 3.7%) than in ARs (1.3%). This could not be attributed to any systematic difference in the chosen contrast references. At Hinode's spatial resolution, the relationship between contrast and apparent longitudinal field strength exhibits a peak at around 700 G in both the QS and ARs, whereas earlier lower resolution studies only found a peak in the QS and a monotonous decrease in ARs. We attribute this discrepancy both to our careful removal of the pores and their close surroundings affected by the telescope diffraction, as well as to the enhanced spatial resolution and very low scattered light of the Hinode Solar Optical Telescope. According to our inversions, the magnetic elements producing the peak of the contrast curves have similar properties (field strength, inclination, filling factor) in ARs and in the QS, so that the larger brightness of magnetic elements in the QS remains unexplained.Comment: 8 figures, 14 page

    The Lantern Vol. 8, No. 1, December 1939

    Get PDF
    • Christmas Resurrection • Autumn\u27s Song • Henry Cavendish • The Mystery of Loon Cove • All Hail, Fair Modesty • Mischall • Gift of the Magi • Camera-Phobia • One Envying a Poet • Sonnetshttps://digitalcommons.ursinus.edu/lantern/1019/thumbnail.jp

    On the intensity contrast of solar photospheric faculae and network elements

    Get PDF
    Sunspots, faculae and the magnetic network contribute to solar irradiance variations. The contribution due to faculae and the network is of basic importance, but suffers from considerable uncertainty. We determine the contrasts of active region faculae and the network, both as a function of heliocentric angle and magnetogram signal. To achieve this, we analyze near-simultaneous full disk images of photospheric continuum intensity and line-of-sight magnetic field provided by the Michelson Doppler Interferometer (MDI) on board the SOHO spacecraft. Starting from the surface distribution of the solar magnetic field we first construct a mask, which is then used to determine the brightness of magnetic features, and the relatively field-free part of the photosphere separately. By sorting the magnetogram signal into different bins we are able to distinguish between the contrasts of different concentrations of magnetic field. We find that the contrasts of active region faculae (large magnetogram signal) and the network (small signal) exhibit a very different CLV, showing that the populations of magnetic flux tubes are different. This implies that these elements need to be treated separately when reconstructing variations of the total solar irradiance with high precision. We have obtained an analytical expression for the contrast of photospheric magnetic features as a function of both position on the disk and magnetic field strength, by performing a 2-dimensional fit to the observations.Comment: 12 pages, 8 figures, uses aa.cl

    Small-scale solar magnetic fields

    Get PDF
    As we resolve ever smaller structures in the solar atmosphere, it has become clear that magnetism is an important component of those small structures. Small-scale magnetism holds the key to many poorly understood facets of solar magnetism on all scales, such as the existence of a local dynamo, chromospheric heating, and flux emergence, to name a few. Here, we review our knowledge of small-scale photospheric fields, with particular emphasis on quiet-sun field, and discuss the implications of several results obtained recently using new instruments, as well as future prospects in this field of research.Comment: 43 pages, 18 figure

    AMR, stability and higher accuracy

    Full text link
    Efforts to achieve better accuracy in numerical relativity have so far focused either on implementing second order accurate adaptive mesh refinement or on defining higher order accurate differences and update schemes. Here, we argue for the combination, that is a higher order accurate adaptive scheme. This combines the power that adaptive gridding techniques provide to resolve fine scales (in addition to a more efficient use of resources) together with the higher accuracy furnished by higher order schemes when the solution is adequately resolved. To define a convenient higher order adaptive mesh refinement scheme, we discuss a few different modifications of the standard, second order accurate approach of Berger and Oliger. Applying each of these methods to a simple model problem, we find these options have unstable modes. However, a novel approach to dealing with the grid boundaries introduced by the adaptivity appears stable and quite promising for the use of high order operators within an adaptive framework

    Observed Effect of Magnetic Fields on the Propagation of Magnetoacoustic Waves in the Lower Solar Atmosphere

    Full text link
    We study Hinode/SOT-FG observations of intensity fluctuations in Ca II H-line and G-band image sequences and their relation to simultaneous and co-spatial magnetic field measurements. We explore the G-band and H-line intensity oscillation spectra both separately and comparatively via their relative phase differences, time delays and cross-coherences. In the non-magnetic situations, both sets of fluctuations show strong oscillatory power in the 3 - 7 mHz band centered at 4.5 mHz, but this is suppressed as magnetic field increases. A relative phase analysis gives a time delay of H-line after G-band of 20\pm1 s in non-magnetic situations implying a mean effective height difference of 140 km. The maximum coherence is at 4 - 7 mHz. Under strong magnetic influence the measured delay time shrinks to 11 s with the peak coherence near 4 mHz. A second coherence maximum appears between 7.5 - 10 mHz. Investigation of the locations of this doubled-frequency coherence locates it in diffuse rings outside photospheric magnetic structures. Some possible interpretations of these results are offered.Comment: 19 pages, 6 figure

    Generalized Parton Distributions at x->1

    Full text link
    Generalized parton distributions at large xx are studied in perturbative QCD approach. As x1x\to 1 and at finite tt, there is no tt dependence for the GPDs which means that the active quark is at the center of the transverse space. We also obtain the power behavior: Hqπ(x,ξ,t)(1x)2/(1ξ2)H_q^\pi(x,\xi,t)\sim (1-x)^2/(1-\xi^2) for pion; Hq(x,ξ,t)(1x)3/(1ξ2)2H_q(x,\xi,t)\sim (1-x)^3/(1-\xi^2)^2 and Eq(x,ξ,t)(1x)5/(1ξ2)3f(ξ)E_q(x,\xi,t)\sim (1-x)^5/(1-\xi^2)^3f(\xi) for nucleon, where f(ξ)f(\xi) represents the additional dependence on ξ\xi.Comment: 7 pages, 2 figure
    corecore