586 research outputs found

    Spectral fluctuations of tridiagonal random matrices from the beta-Hermite ensemble

    Full text link
    A time series delta(n), the fluctuation of the nth unfolded eigenvalue was recently characterized for the classical Gaussian ensembles of NxN random matrices (GOE, GUE, GSE). It is investigated here for the beta-Hermite ensemble as a function of beta (zero or positive) by Monte Carlo simulations. The fluctuation of delta(n) and the autocorrelation function vary logarithmically with n for any beta>0 (1<<n<<N). The simple logarithmic behavior reported for the higher-order moments of delta(n) for the GOE (beta=1) and the GUE (beta=2) is valid for any positive beta and is accounted for by Gaussian distributions whose variances depend linearly on ln(n). The 1/f noise previously demonstrated for delta(n) series of the three Gaussian ensembles, is characterized by wavelet analysis both as a function of beta and of N. When beta decreases from 1 to 0, for a given and large enough N, the evolution from a 1/f noise at beta=1 to a 1/f^2 noise at beta=0 is heterogeneous with a ~1/f^2 noise at the finest scales and a ~1/f noise at the coarsest ones. The range of scales in which a ~1/f^2 noise predominates grows progressively when beta decreases. Asymptotically, a 1/f^2 noise is found for beta=0 while a 1/f noise is the rule for beta positive.Comment: 35 pages, 10 figures, corresponding author: G. Le Cae

    Xenodens calminechari gen. et sp. nov., a bizarre mosasaurid (Mosasauridae, Squamata) with shark-like cutting teeth from the upper Maastrichtian of Morocco, North Africa

    Get PDF
    The mosasaurids (Mosasauridae) were a group of lizards that became highly specialized for marine life in the mid-Cretaceous. By the end of the Cretaceous, they had undergone an adaptive radiation, and showed a wide range of body sizes, locomotor styles, and diets. Their ranks included piscivores, apex predators, and durophages. Here, we report a new taxon, Xenodens calminechari gen. et sp. nov., from the upper Maastrichtian phosphates of Morocco, with dental specializations unlike those of any known reptile. Teeth form a unique dental battery in which short, laterally compressed and hooked teeth formed a saw-like blade. Unique features of tooth structure and implantation suggest affinities with the durophagous Carinodens. The tooth arrangement seen in Xenodens not only expands known disparity of mosasaurids, but is unique among Squamata, or even Tetrapoda. The specialized dentition implies a previously unknown feeding strategy, likely involving a cutting motion used to carve pieces out of large prey, or in scavenging. This novel dental specialization adds to the already considerable disparity and functional diversity of the late Maastrichtian mosasaurids and marine reptiles. This provides further evidence for a diverse marine fauna just prior to the K-Pg extinction

    New ophthalmosaurid ichthyosaurs from the European lower cretaceous demonstrate extensive ichthyosaur survival across the Jurassic–Cretaceous boundary

    Get PDF
    Background Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. Methodology/Principal Findings Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval. Conclusions/Significance There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to their total extinction at the beginning of the Late Cretaceous

    Non-Intrusive Velocity Measurements with MTV During DCC Event in the HTTF

    Get PDF
    Velocity profiles are measured using molecular tagging velocimetry (MTV) in the high temperature test facility (HTTF) at Oregon State University during a depressurized conduction cooldown (DCC) event. The HTTF is a quarter scale electrically heated nuclear reactor simulator designed to replicate various accident scenarios. During a DCC, a double ended guillotine break results in the reactor pressure vessel (RPV) depressurizing into the reactor cavity and ultimately leading to air ingress in the reactor core (lock-exchange and gas diffusion). It is critical to understand the resulting buoyancy-driven flow to characterize the reactor self-cooling capacity through natural circulation. During tests conducted at ambient pressure and temperature, the RPV containing helium is opened (via the hot and cold legs) to a large vessel filled with nitrogen to simulate the atmosphere. The velocity profile on the hot leg pipe centerline is recorded at 10 Hz with MTV based on NO tracers. The precision of the velocimetry was measured to be 0.02 m/s in quiescent flow prior to the tests. A helium flow from the RPV is initially observed in the top quarter of the pipe. During the first 20 seconds of the event, helium flows out of the RPV with a maximum velocity below 2 m/s. The velocity profile transitions from parabolic to linear in character and decays slowly over the rest of the recording; peak velocities of 0.2 m/s are observed after 30 min. A counter-flow of nitrogen is also observed intermittently, which occurs at lower velocities (>0.1 m/s)

    Two Antagonistic MALT1 Auto-Cleavage Mechanisms Reveal a Role for TRAF6 to Unleash MALT1 Activation.

    Get PDF
    The paracaspase MALT1 has arginine-directed proteolytic activity triggered by engagement of immune receptors. Recruitment of MALT1 into activation complexes is required for MALT1 proteolytic function. Here, co-expression of MALT1 in HEK293 cells, either with activated CARD11 and BCL10 or with TRAF6, was used to explore the mechanism of MALT1 activation at the molecular level. This work identified a prominent self-cleavage site of MALT1 isoform A (MALT1A) at R781 (R770 in MALT1B) and revealed that TRAF6 can activate MALT1 independently of the CBM. Intramolecular cleavage at R781/R770 removes a C-terminal TRAF6-binding site in both MALT1 isoforms, leaving MALT1B devoid of the two key interaction sites with TRAF6. A previously identified auto-proteolysis site of MALT1 at R149 leads to deletion of the death-domain, thereby abolishing interaction with BCL10. By using MALT1 isoforms and cleaved fragments thereof, as well as TRAF6 WT and mutant forms, this work shows that TRAF6 induces N-terminal auto-proteolytic cleavage of MALT1 at R149 and accelerates MALT1 protein turnover. The MALT1 fragment generated by N-terminal self-cleavage at R149 was labile and displayed enhanced signaling properties that required an intact K644 residue, previously shown to be a site for mono-ubiquitination of MALT1. Conversely, C-terminal self-cleavage at R781/R770 hampered the ability for self-cleavage at R149 and stabilized MALT1 by hindering interaction with TRAF6. C-terminal self-cleavage had limited impact on MALT1A but severely reduced MALT1B proteolytic and signaling functions. It also abrogated NF-κB activation by N-terminally cleaved MALT1A. Altogether, this study provides further insights into mechanisms that regulate the scaffolding and activation cycle of MALT1. It also emphasizes the reduced functional capacity of MALT1B as compared to MALT1A

    Saturn's Seasonal Variability from Four Decades of Ground-Based Mid-Infrared Observations

    Full text link
    A multi-decade record of ground-based mid-infrared (7-25 μ\mum) images of Saturn is used to explore seasonal and non-seasonal variability in thermal emission over more than a Saturnian year (1984-2022). Thermal emission measured by 3-m and 8-m-class observatories compares favourably with synthetic images based on both Cassini-derived temperature records and the predictions of radiative climate models. 8-m class facilities are capable of resolving thermal contrasts on the scale of Saturn's belts, zones, polar hexagon, and polar cyclones, superimposed onto large-scale seasonal asymmetries. Seasonal changes in brightness temperatures of 30\sim30 K in the stratosphere and 10\sim10 K in the upper troposphere are observed, as the northern and southern polar stratospheric vortices (NPSV and SPSV) form in spring and dissipate in autumn. The timings of the first appearance of the warm polar vortices is successfully reproduced by radiative climate models, confirming them to be radiative phenomena, albeit entrained within sharp boundaries influenced by dynamics. Axisymmetric thermal bands (4-5 per hemisphere) display temperature gradients that are strongly correlated with Saturn's zonal winds, indicating winds that decay in strength with altitude, and implying meridional circulation cells forming the system of cool zones and warm belts. Saturn's thermal structure is largely repeatable from year to year (via comparison of infrared images in 1989 and 2018), with the exception of low-latitudes. Here we find evidence of inter-annual variations because the equatorial banding at 7.9 μ\mum is inconsistent with a 15\sim15-year period for Saturn's equatorial stratospheric oscillation, i.e., it is not strictly semi-annual. Finally, observations between 2017-2022 extend the legacy of the Cassini mission, revealing the continued warming of the NPSV during northern summer. [Abr.]Comment: 25 pages, 15 figures, accepted for publication in Icaru

    Unexpected Novel Relational Links Uncovered by Extensive Developmental Profiling of Nuclear Receptor Expression

    Get PDF
    Nuclear receptors (NRs) are transcription factors that are implicated in several biological processes such as embryonic development, homeostasis, and metabolic diseases. To study the role of NRs in development, it is critically important to know when and where individual genes are expressed. Although systematic expression studies using reverse transcriptase PCR and/or DNA microarrays have been performed in classical model systems such as Drosophila and mouse, no systematic atlas describing NR involvement during embryonic development on a global scale has been assembled. Adopting a systems biology approach, we conducted a systematic analysis of the dynamic spatiotemporal expression of all NR genes as well as their main transcriptional coregulators during zebrafish development (101 genes) using whole-mount in situ hybridization. This extensive dataset establishes overlapping expression patterns among NRs and coregulators, indicating hierarchical transcriptional networks. This complete developmental profiling provides an unprecedented examination of expression of NRs during embryogenesis, uncovering their potential function during central nervous system and retina formation. Moreover, our study reveals that tissue specificity of hormone action is conferred more by the receptors than by their coregulators. Finally, further evolutionary analyses of this global resource led us to propose that neofunctionalization of duplicated genes occurs at the levels of both protein sequence and RNA expression patterns. Altogether, this expression database of NRs provides novel routes for leading investigation into the biological function of each individual NR as well as for the study of their combinatorial regulatory circuitry within the superfamily

    The orphan receptor ERRα interferes with steroid signaling

    Get PDF
    The estrogen receptor-related receptor α (ERRα) is an orphan member of the nuclear receptor superfamily that has been shown to interfere with the estrogen-signaling pathway. In this report, we demonstrate that ERRα also cross-talks with signaling driven by other steroid hormones. Treatment of human prostatic cells with a specific ERRα inverse agonist reduces the expression of several androgen-responsive genes, in a manner that does not involve perturbation of androgen receptor expression or activity. Furthermore, ERRα activates the expression of androgen response elements (ARE)-containing promoters, such as that of the prostate cancer marker PSA, in an ARE-dependent manner. In addition, promoters containing a steroid response element can be activated by all members of the ERR orphan receptor subfamily, and this, even in the presence of antisteroid compounds
    corecore