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Axisymmetric Instability of Fluid
s.p.Baret § Saturated Pervious Cylinders

Civil Engineering Department,
University of Southern California,

Los Angeles, CA 90089-2531 The emergence of two-phase instability is investigated analytically for the axisymmetric

] cylinders made of a pervious solid matrix with pores filled with an interstitial fluid.
S. lai General analytical solutions are derived for a broad range of constitutive models, and are
Geotechnical Earthquake Engineering illustrated for a few specific types of solids. For particular combinations of stresses and
Laboratory, material moduli, saturated hypoelastic and elastoplastic solids are found to undergo
Port and Harbour Research Institute, two-phase instability, whereas their dry solid matrices remain stable. Two-phase instabil-
Yokosuka 239-0826, Japan ity can emerge within stable single-phase solids due to the interaction between solid

matrix and fluid flow. The present analysis provides general analytical solutions useful for
investigating the instabilities of axisymmetric soil samples subjected to the undrained
triaxial tests of geomechanic§DOI: 10.1115/1.1505624

Introduction Definitions

Nonlinear pervious solids which have connected pores satu-problem Definition. As shown in Fig. 1, the cylinder is made
rated with an interstitial fluidi.e., two-phase materigiscan be- of a pervious solid matrix of heightt2 and radiusR, the pores of
come mechanically unstable as shown by Hitgfor saturated which are filled with an interstitial fluid. It is assumed tla} the
dilatant hardening rocks, and Vardoulak&3] for saturated con- fluid is free to permeate through the connected voids of the solid
tractant granular soils. The instabilities of two-phase materiaatrix, (2) the lateral side and end extremities of the cylinder are
have not been investigated as extensively as those of single-phiA¥gervious and frictionless, an@) the specimen remains cylin-
solids (e.g., Bardef4], Biot [5], Chau[6,7], Hill and Hutchinson drical when it is loaded axially in either compression or tension.

: : Hereafter, the solid-fluid mixture is referred to as a two-phase
(8], Vardoulakls[g],_and Vardqula_lkls and SuIe_EﬂO]). They have material. The geometry of Fig. 1 is intended to represent that of
been analyzed using the principle of effective stréSshrefler

. ) soil samples subjected to the undrained triaxial testing in soil me-
etal. [11]) and assuming constant-volume deformatidesy., chanics(e.g., Bardef18]). In these tests, cylindrical soil samples
Darve[12], Di Prisco and Nov413], Nova[14], and Lad€[15]). are saturated with water, compressed axially through lubricated
These approaches, which consider two-phase materials as sinfietionless platens, and confined laterally with pressure. Similar
phase materials, revealed the isochoric instabilities resulting fraggometries are also found in the testing of other porous solids
solid nonlinearities, but neglected the effects of fluid compresés.g., rocks and concrgteThe boundary conditions are carefully
ibility and fluid flow throughout pervious solids. Bardet and Shiwelected so that the fluid pressure, stress, and strain can be as-
[16] examined the two-phase instability of plane-strain rectang§Umed uniform and axisymmetric throughout the cylinder. At any
lar samples of pervious solids with voids filled with compressibldfiven loading state, the Cauchy stress components anywhere
incompressible fluids. Bardgt 7] showed that two-phase instabil—WIthIn the cylinder are
ity causes numerical difficulties for the finite element solutions of on=0yy and o,=0,y=0,=0 (1)
plane-strain boundary value problems involving water diffusion
within nonlinear solids. So far, two-phase instability has only bed¥€€ o, 04y, 01y, 01z, anday,, are the Cauchy stress com-

investigated for plane-strain problems, and not for axisymmetrP@nent$ in the polar coordlnatc_asa, andz of Fig. 1. .
. . . . . Possible departures from uniform states will be investigated by
conditions, which are very common in soil testin@.g.,

formulating a linear stabilityor incremental bifurcationproblem.

Bardet,[18]). . y _ Starting from a given uniform state of fluid pressure, stress, and

This paper analyzes the two-phase instability of axisymmetrigrain, we investigate the circumstances for which the rates of
cylinders made of a pervious solid with pores filled with an inteffjuid pressure, solid stresses, and solid strains may become non-
stitial fluid. It derives general analytical axisymmetric solutionsiniform within the cylinder. For a given rate of prescribed load-
for a large variety of constitutive models, examines the relatiomsg, the boundary conditions of the incremental bifurcation prob-
of one and two-phase instabilities, and considers the compressilim are as follows:
ity of _solld and_ fluuj cons_tltuents. The prt_asent analysis is I|m|tegzzo, t,=0 and p,=0 forz=+H and O<r=R
to axisymmetric bifurcation modes, which are commonly ob- ' (2a)
served on cylindrical samples during conventional laboratory ex-
periments. Symmetry-breaking instabilities and antisymmetric hi;=0, t,=0 and p,=0 forr=R and —Hszs<H
furcation modege.g., lateral buckling and localization of strain (2b)

within planar shear bangisre beyond the scope of this analySiSwherep is the time rate of fluid pressure changethe solid

velocity, andt the rate of applied distributed force at the boundary.
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A The generality of the present analysis is not affected by the choice
of the Jaumann rate of Kirchhoff stress. As shown in Bafdét
the analysis applies to other types of objective stress rates after

v,=0,t,=0,p,,=0

z
\>R/ adding stress-dependent moduli to the constitutive moduli in
Y Equation(7).
\ r Axisymmetric Conditions. In the case of axisymmetric ve-
v=0 5 > locity fields (i.e.,v4=0 andv, 4=v, ,=0), the nonzero terms of
{r;: 0 —»! deformation rate and spin tensors are
b’r= 0 H Ur
Drr:Ur,r! Dzz:vz,zr DQH:Tv
Drz:%(vr,z+vz,r): Wrz:_wzr:%(vr,z_vz,r)- (14)
Fig. 1 Geometry, coordinate systems, and boundary condi- Hereafter, we consider the following axisymmetric constitutive
tions of cylindrical porous solid for linear stability analysis equation:
}rr =Cy1D +C1D g+ C13Do, (152)
normal vectom, is related to the Cauchy stress tensoand the ~A
nominal (Piola-Kirchhoff) stress tensok through Too=C12Drr +C1iD gy C1dD 2, (130)
t=n-cdS=N-3dS, 3) 727=C31Dr + C31D g+ C3aD 5, (150)
whereN andd§, are the unit normal vector and area, respectively, Tiz=2C4D,, (15d)
of the reference surface. Nominal and Cauchy stresses are related - .
through y Wﬁerecll, Ci2, C43, Cs3, C3q, andC,, are constitutive moduli.

This general constitutive form, which was used by Ci&] will
S=de(F)F 1o (4) be later specified for some particular types of constitutive models.

whereF ! is the inverse transformation of the deformation gra- Equilibrium Equations. In axisymmetric conditions and cy-
dientF. By definition the Kirchhoff stress tenseris related too  lindrical coordinates, the stress-rate equilibrium equations for
through solid materials are¢Hill [20]):

r=dei(F)o (5) . ) 1 . .
+3, 1+ =S =) =
The rates ot and> are et 2z r (Zrr=260) =0
t=N-3dS, and S=de(F)F . (¢—L-o+otracdl)) . . 1.
(6) Szt 2t Fzrz: 0. (16)
whereL is the velocity gradient tensor. Using Eqg.(13), Eqg. (16) can be expressed in terms of Cauchy
Rate-Type Constitutive Models. In the present linear stabil- stress:
ity analysis, the behavior of the solid materials is modeled with

; R R 1.

rate-type equationéTruesdell and Nol[19]) T Gog)+ (o — )W, ,=0  (173)
7=C-D @)

where7 is the Jaumann rate of Kirchhoff stressD the rate of R A Ea'rz'i_(o'rr_o'zz)(wzr A+ szr) =0.

deformation, andC the fourth-order stiffness tensor. In genefal, ' r r

is homogeneous of degree zeroDnand depends on the states of (17p)

stress and strain. The Jaumann rate of Kirchhoff stress is Solid-Fluid Coupling. The solid-fluid coupling is described

T=7—W- 74+ 7 W. (8) using the following generalized effective stress princif@ehre-
. . fler et al.[11]):
The rate of deformatio and spin tensow are

D=3L+L") W=3L-L") ©)

where the superscript™ denotes transpose. The Jaumann rate
Cauchy stresg, which is defined similarly to Eq8), is related to

O'i’j:a'ij+ap5ij (18)

dghere gjj is the total Cauchy stress tensor{j the effective
auchy stress tensor, apdhe interstitial fluid pressure. By sign

7 through convention, boths;; and of; are positive in tension, ang is
R R positive in compression. The coefficieatis a positive constant
7=de{(F)(o+otracegD)). (10)  that depends on the bulk modullisof the solid skeleton and the
When the present configuration is chosen as reference, the def$tk modulusK, of the solid grains agSchrefler et al[11])
Tatlon gradient is approximately equal to the unity transformation a=1—KIKs. (19)
1 The physical parameter is mathematically convenient to model
F~F°~1 and detF)~1. (1) the solid-fluid coupling from completé.e., a=1) to none(i.e.,
In this condition, the nominal, Cauchy, and Kirchhoff stress ter=0). Hereafter, the superscript prime is omitted for effective
sors are identical: stress because all stresses for the solid phase are effective. By
substituting Eq(18) into Eq. (17), the axisymmetric equilibrium
S=o=7 (12)  equations for two-phase materials are

and their rates are related through

A~ SN O v+ 0 g+ — (0 — T gg) + (00 — = af
r=o+otracdD) and X=o+otracdD)—o-W—D-g. Tirrt Oara® (O = Top) ¥ (01 = 02) War,, = b

(13) (209)
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N - 1. 1 . 0 (for m, even
Trzpt O+ Fo'rz+(‘7rr70'zz) Wo FWzr =ap;.

(200)

The fluid pressurg obeys the flow conservation equati@chre-
fler et al.[11])

0= (2&)

INTRE]

(for m, odd)

By substituting these modes into E®@5) and introducingf* so

that
1 p .
p,rr+rp,r+p,zz=:8 a Ur,r+rvr+vz,z +6 (21) f*:B::E_:;; (29)
where the parametes is related to the fluid unit weight,, and ) ) )
coefficient of permeabilitk through the following relations are obtained:
B= vk (22) Bidi+B5ds  B1Bdy —af v 0
The paramete® is the bulk modulus of the two-phase material, B1B2ds  Bids+B5d, —apf, Vl _lo
which is related to the porosityand the fluid bulk moduluk; as £* 2( = :
follows (Schrefler et al[11]): apqf* aB,f* Ba+ Ba+ ) P 0
1 n a—n (30)
—_—= 4 — (23) S o
0 Ki K From the third line in Eq(30), f* is given by
After introducing the following coefficients —(B2+BHP
f*= . 31
d;=Cy—oy, d;=Cg3— 0y, (24a) P (31)

N N a(B1V1+BaVa) + )

d3=Cuy=5(0 =07, dy=Cyst Cizt 5(0 + 057

(240)  The coefficientf* is thus independent of time and space and,
hence, the solution of Eq29) is

(24c) f(t)="f,exp(f*t/B) (32)

Egs.(20) and(21) become wheref, represents an initial amplitude of the nontrivial bifurcat-
1 1 ing solution. Wherf* >0, f(t) grows exponentially with time and
Up et TV T 20 +d3v, .+ g, =ap, (253) eventually becomes infinite. Hence, the bifurcating solution gen-
erates a material instability. Wheri <0, the bifurcating solution
1 ) dies out with time, and has little physical relevance. A set of
Urrzt er,z) =ap, nontrivial bifurcating solutions fo¥,, V,, andP exist when the
determinant of the matrix in E§30) becomes zero. After defining

ds=Cast 5(0 —03), dg=Cus+Ca—3(0r+05)

d;

+dyv,,,+de

1
ds Uzt sz,r

(250) the wavelength ratio of the bifurcating mode as
.1, : o p
p,rr+Fp,r+p,zz=,8 a Ur,r+er+vz,z +6 . (2% AI%, (33)
1
E g# : t'.?ﬂézi? clrtserllqgﬁt?jnbdoinnt d%(r:)/lzvglljueetgrs)t§12¥nmig] ?itrr}';”;()fg?r']ﬂhe condition for the existence of nontrivial bifurcating solutions
lated in terms of solid velocity, andv, and fluid pressurp after in Eq. (30) is
restating Eq(2) as follows: @?f*  N(A) 3
. ————s = —>0. 4
v,=0, v,,=0, v,,=0 and p,=0 for BitB; D(A) (34)
7=+H and O0<r<R (26a) The numerator and denominator of the left side of &B4) are
v,=0, v,,=0, v,,=0 and p,=0 forr=R and N(A)=a;A*+biA%+cy, D(A)=aA*+bA%+c, (35)
—H=z<H. (289)  \where
Trivial and Nontrivial Bifurcating Solutions.  Fields of con- a;=d,d;, by;=d;dy+dsds—d,dg, cy=d,ds (36a)
stant solid velocity gradient and fluid pressure are obvious solu-
tions of Egs.(25 and (26). The nontrivial bifurcating solutions a,=—dz—a;x, by,=—d;—d,+d,+dg—bqy,
are sought in the following modes:
V.3 o - C,=—ds—C1x (36h)
= rycog B,z+ t a
Uy 1J1(B1r) .5(,32 2 f() (279) X=l/a2®. (360)
v, =V2Jo( B1r)sin( B2+ 6,) (1) (270) Three types of instability and associated conditions can be
P=PJo(Bar)cos Boz+ ) (1) (27c)  defined:
whereJ, (x) is the Bessel function of the first kind amth order, solid-fluid (SF) instability for N(A)/D(A)>0 (37a)

and 0, denotes a phase shift. These modes satisfy the boundary R . . . .
conditions of Eg.(26) when B,, B», and 6, are selected as infinite. solid-fluid (SFe) instability

follows: for D(A)=0 and N(A)#0 (3M)

B1R=0, £3.832, *7.016, =*=10.173...(roots of Jl(gsoa)) solid (S) instability for N(A)=0 (37)

The SF instability is obtained when there are modes with wave-

_m . length ratiosA satisfying Eq.(37a). The SFe instability is a
PoH=Zm, for m integer (28) particularSF instability with f* — +9, which corresponds to an
Journal of Applied Mechanics NOVEMBER 2002, Vol. 69 / 719
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Fig. 2 Dimensionless p*-g* domains of S, SF, and SF« instabilities for hy-
poelastic material with incompressible fluid (x*=0, »=0.3)

infinite exponential growth, and a severe solid-fluid instabilitywhere . is the shear modulus andthe Lame’s modulus, which
The Sinstability is the material instability obtained for the solidare related to Poisson’s ratiothrough

alone without interstitial water. Th8 instability is obtained by
settinga=0 in Eq. (30), fully decoupling the solid and fluid, and
ignoring the interstitial fluid SF instability can be physically in-
terpreted as the result of a rapidly growing flow of interstitial fluid
through the pervious solid, which may create solid-fluid interadt is convenient to introduce the following nondimensional stress
tion forces and promote the emergence of nonuniform modes @fmponents and coefficients:

deformation. In theorySF instability could be detected by mea-
suring the spatial fluctuation of fluid pressure within the material
specimens tested in the laboratory.

2vu

A= 1-2v’ (39)

Ontoyg,

2u

p*=- ,and x*=pyx. (40)
L The hypoelastic model is useful for developing closed-form ana-
Applications lytical solutions for simple linear stability problems and compar-
The one and two-phase axisymmetric instabilities will be exaning numerical and analytical results.g., Bardef17]). However,
ined for three particular types of rate-type constitutive equationtfte hypoelastic model has only two material parameters, and
(1) hypoelastic modelq2) elastoplastic models, ar{8) Rudnicki therefore limited capabilities in modeling realistically all types of
pressure-sensitive models. material responses.
Figures 2 to 4 show the*-g* domains ofS SF, and SFx
stability for various cases of fluid and solid compressibility. By
definition, p* is positive in compression and negative in tension.

Hypoelastic Model. The constitutive moduli of isotropic hy- in
poelastic models aréBardet[4])

C11=C33=2u+\, Cy3=Cz;=N and Cu=u (38) Thesep*-g* domains are symmetric about tpé- axis, and are
5
3 1 No Instabilit
g ility
N
© SF/SF
o |
‘”’ All
o] SFe</SF/S Instability
Al
/ No Instability
O T / T T T T T T T
-5 0 5

SFe/SF
p*='(0rr+Gzz)/ 2“*

Fig. 3 Dimensionless p*-g* domains of S, SF, and SF« instabilities for hy-

poelastic material with compressible fluid
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Fig. 4 Dimensionless p*-g* domains of S, SF, and SF instabilities for hy-
poelastic material with compressible fluid (x*=0.5, v=0.43)

only represented for positive valuesgf. As shown in Fig. 2 for 0 —2(1-sin¢) d
incompressible fluidi.e., x* =0), zero stress states are initially 337 —— - an

stable. Forg* =1 andp* >0, all types of instability emerge si- V2(3-2sin¢+3 it ¢)

multaneously. Fop* <—2, SF and SF« instabilities appear in 1+sing

areaA without Sinstability. As shown in Fig. 3, the size of area A Q= (42b)
shrinks with the compressibility of the interstitial fluid.e., V2(3—2 sing+3 sirf ¢)

*=0.5. SF and S instabilities may occur simultaneously when . - .
i)(* decSr)eases below 3. As shown |¥1 Fig. 4, the size of ar)éa A al\évgrlgreéhbe mobilized friction angle and the dilatancy anglé are
shrinks as the solid becomes more incompressibde, »=0.43), fined by
and vanishes for incompressible matefia¢., »=0.5). In the in- )
compressible limit,S SF, and SF= instabilities may emerge sing=

simultaneously.

Oz7— Orr
— and

Ozt Oy

Elastoplastic Mohr-Coulomb Model. The constitutive ’(d8§z+2depr)__('333+2p11)

moduli of elastoplasticity aréHill [21] and Barde{4]) sing= deP—deP Pg—Py (43)
1 Figure 5 shows an example of instability domain in the H/ u

Cu=2u+N= 57[2uP1+ N (Psgt2P1y)] plane forv=0.3, y=—30 deg andy* =0. The variations of elas-

toplastic moduli for fixed values af, , andx* are characterized

X[2uQ11+N(Q33+2Q19)], solely by the values of andH/u, which are represented using

the point M of coordinategh—H/u in Fig. 5. When the stress
states are initially isotropic at the beginning of a shear loading, the
point M is initially in the upper left corner, which corresponds to
an elastic stateH{>1) and no shear stresg=0). As the shear
X[2u1Qa3+ N (Qa3+2Q11)], stress increases, point M moves down from the upper left corner
1 and intersects the SF/S boundary,Sif/SF boundary. If$<8
N deg, point M intersects first th&F/Sboundary for strain-softening
Cus=A = 7 [2P1t MPast 2P1) 124Qsst MQsst 2Quu) ] ¢ Bhiione H<0). In this caseSF and Sinstabilities will occur
1 simultaneously. If¢p>8 deg, point M will intersect th&Fe/SF
_ boundary for either strain-softening, strain-hardenikig=0), or
Car= A= 7 [21P3gt M(Paat2P1) [21Qua+ M(Qagt 2Quy) ], perfectly plastic H=0) conditions. This implies th&Fe and/or
SF instabilities may emerge witho@&instabilities for contractant
Cu=pn elastoplastic materials. In other wordsk> and/orSF instabili-
ties are not necessarily generateddipstabilities.

1
Csz=2u+N— W[ZMPSQ,"‘ N(P3gt+2Pyy)]

H'=H+N(P33+2P11) (P3a+2P11) +2u(2P11Q11+ P33Q33) o i L o o
(41) Rudnicki Model. In the investigation of material instability,

. . . . Rudnicki [22] proposed the following rate-independent constitu-
whereH is the plastic modulus; anB; andQ;; are unit tensors e model for axisymmetric conditions, which generalizes most

representing the flow and yield directions, respectively. For @nstitutive models used in linear stability analyses
Mohr-Coulomb material and axisymmetric conditions, the unit

tensorsP;; and Q;; are related to the mobilized friction angée C11=9K/4+ G, C13=9Kv/2, C3z5=9Kr*/4,
and the dilatancy anglé¢ as follows:
C33=E/2+9Kwr*/2, Cu=G, (44)
p33:ﬂ nd Pnzﬂ 42a) whereK, E, v, r*, G,, andG, are material moduli, the physical
V3(2+sir? ) V3(2+sir? i) meanings of which are defined in Rudnidi@2] and Chau[7].
Journal of Applied Mechanics NOVEMBER 2002, Vol. 69 / 721
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Fig. 5 Domain of S, SF, and SF« instabilities for elastoplastic contractant Mohr-
Coulomb material and incompressible fluid (v=0.3, y=—30 deg and x*=0)

5 3
. SFe/SF
Instability
= 3 All: SFe/SF/S Instability
N\
tp: 0 SFeo/SF No Instability
o All
F’/ _
o All
] SF/SF
_ Instability
'5 T T T T T Y= T T T
-5 0 5

p*=' (Grr"'czz)/ 2“

Fig. 6 Dimensionless p*-g* domains of S, SF, and SF« instabilities for Rudnic-
ki's model for incompressible fluid (X*=0, G,/2G;=0.5, KI2G;=1, »=0.3, and r*
=0.6)

Figure 6 shows the domains of instability of Ruckniki’s model ircumstances, e.g., when Eq4.8) and (21) do not hold due to
the p* —g* coordinates used for the hypoelastic model of Figsapillary effects and bubble formation in the interstitial fluid
2—4 for particular values of material paramete@/2G;=0.5; (Schrefler et al[11]).
K/2G,=1; v=0.3;r*=0.6; and incompressible interstitial fluid The analysis needs to be extended to nonaxisymmetric defor-
x*=0. For this particular selection of model parameters, the dgiations(e.g., strain localization which have been shown in the
mains ofS, SF, andSFx instabilities are similar to those of Fig. case of dry so!ids to become the predominant modes of instability
2, except for the asymmetry about the-axis. As for hypoelastic When the axisymmetry constraints are removg., Chau
models,SF andS e instabilities are not generated Byinstabil-  [7,23)). The general framework and solutions also need to be ap-
ity in area A. plied to constitutive models specific to geomechanics and investi-
gated in the context of undrained triaxial testing. There is also a
need to investigate the effects of two-phase instability on the nu-

. ) merical solutions of liquefaction problems in geomechanics, fol-
Discussion lowing the approach of Bard¢l7] for hypoelastic materials.

A general mathematical framework and analytical solutions
have been derived for studying the two-phase instability of axjx .
symmetric cylinders made of a wide variety of pervious solid onclusions
filled with a compressible/incompressible fluid. The present analy- The emergence of two-phase instability was investigated ana-
sis is based on the assumptions stated in Big8, (18), and(21). lytically in the case of pervious solid cylinders with voids filled
The analysis holds provided that these mechanical assumptiovith an interstitial fluid. The analysis develops a mathematical
represent the material physics, but may break down in some diramework and analytical solutions that apply to a broad range of
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elastoplastic models were found to undergo two-phase instability11] Schrefler, B. A., Simoni, L., Xikui, L., and Zienkiewicz, O. C., 1990, “Me-
and no solid instability. Two-phase instability can emerge in stable chanics of Partially Saturated Porous Medialtimerical Methods and Con-

; I ; ; ; stitutive Modeling in Geomechanid8. S. Desai and G. Gioda, eds., Springer-
solids due to the interaction between fluid flow and porous solid Verlag, New York, pp. 169-209.
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