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Axisymmetric Instability of Fluid
Saturated Pervious Cylinders
The emergence of two-phase instability is investigated analytically for the axisymm
cylinders made of a pervious solid matrix with pores filled with an interstitial flu
General analytical solutions are derived for a broad range of constitutive models, and
illustrated for a few specific types of solids. For particular combinations of stresses
material moduli, saturated hypoelastic and elastoplastic solids are found to und
two-phase instability, whereas their dry solid matrices remain stable. Two-phase ins
ity can emerge within stable single-phase solids due to the interaction between
matrix and fluid flow. The present analysis provides general analytical solutions usef
investigating the instabilities of axisymmetric soil samples subjected to the undra
triaxial tests of geomechanics.@DOI: 10.1115/1.1505624#
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Introduction

Nonlinear pervious solids which have connected pores s
rated with an interstitial fluid~i.e., two-phase materials!, can be-
come mechanically unstable as shown by Rice@1# for saturated
dilatant hardening rocks, and Vardoulakis@2,3# for saturated con-
tractant granular soils. The instabilities of two-phase mater
have not been investigated as extensively as those of single-p
solids~e.g., Bardet@4#, Biot @5#, Chau@6,7#, Hill and Hutchinson
@8#, Vardoulakis@9#, and Vardoulakis and Sulem@10#!. They have
been analyzed using the principle of effective stress~Schrefler
et al. @11#! and assuming constant-volume deformations~e.g.,
Darve@12#, Di Prisco and Nova@13#, Nova @14#, and Lade@15#!.
These approaches, which consider two-phase materials as si
phase materials, revealed the isochoric instabilities resulting f
solid nonlinearities, but neglected the effects of fluid compre
ibility and fluid flow throughout pervious solids. Bardet and Sh
@16# examined the two-phase instability of plane-strain rectan
lar samples of pervious solids with voids filled with compressib
incompressible fluids. Bardet@17# showed that two-phase instabi
ity causes numerical difficulties for the finite element solutions
plane-strain boundary value problems involving water diffus
within nonlinear solids. So far, two-phase instability has only be
investigated for plane-strain problems, and not for axisymme
conditions, which are very common in soil testing~e.g.,
Bardet,@18#!.

This paper analyzes the two-phase instability of axisymme
cylinders made of a pervious solid with pores filled with an int
stitial fluid. It derives general analytical axisymmetric solutio
for a large variety of constitutive models, examines the relati
of one and two-phase instabilities, and considers the compress
ity of solid and fluid constituents. The present analysis is limi
to axisymmetric bifurcation modes, which are commonly o
served on cylindrical samples during conventional laboratory
periments. Symmetry-breaking instabilities and antisymmetric
furcation modes~e.g., lateral buckling and localization of stra
within planar shear bands! are beyond the scope of this analys
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Definitions

Problem Definition. As shown in Fig. 1, the cylinder is mad
of a pervious solid matrix of height 2H and radiusR, the pores of
which are filled with an interstitial fluid. It is assumed that~1! the
fluid is free to permeate through the connected voids of the s
matrix, ~2! the lateral side and end extremities of the cylinder a
impervious and frictionless, and~3! the specimen remains cylin
drical when it is loaded axially in either compression or tensio
Hereafter, the solid-fluid mixture is referred to as a two-pha
material. The geometry of Fig. 1 is intended to represent tha
soil samples subjected to the undrained triaxial testing in soil m
chanics~e.g., Bardet@18#!. In these tests, cylindrical soil sample
are saturated with water, compressed axially through lubrica
frictionless platens, and confined laterally with pressure. Sim
geometries are also found in the testing of other porous so
~e.g., rocks and concrete!. The boundary conditions are carefull
selected so that the fluid pressure, stress, and strain can b
sumed uniform and axisymmetric throughout the cylinder. At a
given loading state, the Cauchy stress components anyw
within the cylinder are

s rr 5suu and s rz5s ru5szu50 (1)

wheres rr , suu , s ru , s rz , andszu are the Cauchy stress com
ponents in the polar coordinatesr, u, andz of Fig. 1.

Possible departures from uniform states will be investigated
formulating a linear stability~or incremental bifurcation! problem.
Starting from a given uniform state of fluid pressure, stress,
strain, we investigate the circumstances for which the rates
fluid pressure, solid stresses, and solid strains may become
uniform within the cylinder. For a given rate of prescribed loa
ing, the boundary conditions of the incremental bifurcation pro
lem are as follows:

vz50, ṫ rz50 and ṗ,z50 for z56H and 0<r<R
(2a)

v r50, ṫ rz50 and ṗ,r50 for r 5R and 2H<z<H
(2b)

where ṗ is the time rate of fluid pressure change,v the solid
velocity, andṫ the rate of applied distributed force at the bounda
The partial differentiation with respect tor, u, andz are denoted
with ‘‘, r ’’ ‘‘, u’’, and ‘‘, z’’ and the derivative with respect to time
with a dot. The incremental bifurcation problem will now be com
pleted by introducing geometric and material nonlinearities, a
equilibrium equations.

Stress States and Rates.By definition, the distributed force
vector t acting on the deformed surface, with areadSt and unit
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normal vectorn, is related to the Cauchy stress tensors and the
nominal ~Piola-Kirchhoff! stress tensorS through

t5n•sdSt5N•SdSo (3)

whereN anddSo are the unit normal vector and area, respective
of the reference surface. Nominal and Cauchy stresses are re
through

S5det~F!F21
•s (4)

whereF21 is the inverse transformation of the deformation g
dient F. By definition the Kirchhoff stress tensort is related tos
through

t5det~F!s (5)

The rates oft andS are

ṫ5N•ṠdSo and Ṡ5det~F!F21
•~ ṡ2L•s1strace~L !!

(6)

whereL is the velocity gradient tensor.

Rate-Type Constitutive Models. In the present linear stabil
ity analysis, the behavior of the solid materials is modeled w
rate-type equations~Truesdell and Noll@19#!

t̂5C•D (7)

where t̂ is the Jaumann rate of Kirchhoff stresst, D the rate of
deformation, andC the fourth-order stiffness tensor. In general,C
is homogeneous of degree zero inD and depends on the states
stress and strain. The Jaumann rate of Kirchhoff stress is

t̂5 ṫ2W•t1t•W. (8)

The rate of deformationD and spin tensorW are

D5
1
2~L1LT! W5

1
2~L2LT! (9)

where the superscript ‘‘T’’ denotes transpose. The Jaumann rate
Cauchy stressŝ, which is defined similarly to Eq.~8!, is related to
t̂ through

t̂5det~F!~ ŝ1strace~D!!. (10)

When the present configuration is chosen as reference, the d
mation gradient is approximately equal to the unity transformat
1:

F'F21'1 and det~F!'1. (11)

In this condition, the nominal, Cauchy, and Kirchhoff stress te
sors are identical:

S5s5t (12)

and their rates are related through

t̂5ŝ1strace~D! and Ṡ5ŝ1strace~D!2s•W2D•s.
(13)

Fig. 1 Geometry, coordinate systems, and boundary condi-
tions of cylindrical porous solid for linear stability analysis
718 Õ Vol. 69, NOVEMBER 2002
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The generality of the present analysis is not affected by the ch
of the Jaumann rate of Kirchhoff stress. As shown in Bardet@4#,
the analysis applies to other types of objective stress rates
adding stress-dependent moduli to the constitutive moduli
Equation~7!.

Axisymmetric Conditions. In the case of axisymmetric ve
locity fields ~i.e., vu50 andv r ,u5vz,u50!, the nonzero terms of
deformation rate and spin tensors are

Drr 5v r ,r , Dzz5vz,z , Duu5
v r

r
,

Drz5
1
2~v r ,z1vz,r !, Wrz52Wzr5

1
2~v r ,z2vz,r !. (14)

Hereafter, we consider the following axisymmetric constituti
equation:

t̂ rr 5C11Drr 1C12Duu1C13Dzz (15a)

t̂uu5C12Drr 1C11Duu1C13Dzz (15b)

t̂zz5C31Drr 1C31Duu1C33Dzz (15c)

t̂ rz52C44Drz (15d)

whereC11, C12, C13, C33, C31, andC44 are constitutive moduli.
This general constitutive form, which was used by Chau@6,7# will
be later specified for some particular types of constitutive mod

Equilibrium Equations. In axisymmetric conditions and cy
lindrical coordinates, the stress-rate equilibrium equations
solid materials are~Hill @20#!:

Ṡrr ,r1Ṡzr,z1
1

r
~Ṡrr 2Ṡuu!50

Ṡrz,r1Ṡzz,z1
1

r
Ṡrz50. (16)

Using Eq. ~13!, Eq. ~16! can be expressed in terms of Cauc
stress:

ŝ rr ,r1ŝzr,z1
1

r
~ ŝ rr 2ŝuu!1~s rr 2szz!Wzr,z50 (17a)

ŝ rz,r1ŝzz,z1
1

r
ŝ rz1~s rr 2szz!S Wzr,r1

1

r
WzrD50.

(17b)

Solid-Fluid Coupling. The solid-fluid coupling is described
using the following generalized effective stress principle~Schre-
fler et al.@11#!:

s i j8 5s i j 1apd i j (18)

where s i j is the total Cauchy stress tensor,s i j8 the effective
Cauchy stress tensor, andp the interstitial fluid pressure. By sign
convention, boths i j and s i j8 are positive in tension, andp is
positive in compression. The coefficienta is a positive constant
that depends on the bulk modulusK of the solid skeleton and the
bulk modulusKs of the solid grains as~Schrefler et al.@11#!

a512K/Ks . (19)

The physical parametera is mathematically convenient to mode
the solid-fluid coupling from complete~i.e., a51! to none~i.e.,
a50!. Hereafter, the superscript prime is omitted for effecti
stress because all stresses for the solid phase are effective
substituting Eq.~18! into Eq. ~17!, the axisymmetric equilibrium
equations for two-phase materials are

ŝ rr ,r1ŝzr,z1
1

r
~ ŝ rr 2ŝuu!1~s rr 2szz!Wzr,z5a ṗ,r

(20a)
Transactions of the ASME
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ŝ rz,r1ŝzz,z1
1

r
ŝ rz1~s rr 2szz!S Wzr,r1

1

r
WzrD5a ṗ,z .

(20b)

The fluid pressurep obeys the flow conservation equation~Schre-
fler et al.@11#!

p,rr 1
1

r
p,r1p,zz5bFaS v r ,r1

1

r
v r1vz,zD1

ṗ

QG (21)

where the parameterb is related to the fluid unit weightgw and
coefficient of permeabilityk through

b5gw /k. (22)

The parameterQ is the bulk modulus of the two-phase materia
which is related to the porosityn and the fluid bulk modulusK f as
follows ~Schrefler et al.@11#!:

1

Q
5

n

K f
1

a2n

Ks
. (23)

After introducing the following coefficients

d15C112s rr , d25C332szz (24a)

d35C442
1
2~s rr 2szz!, d45C441C131

1
2~s rr 1szz!

(24b)

d55C441
1
2~s rr 2szz!, d65C441C312

1
2~s rr 1szz!

(24c)

Eqs.~20! and ~21! become

d1S v r ,rr 1
1

r
v r ,r2

1

r 2 v r D1d3v r ,zz1d4vz,rz5a ṗ,r (25a)

d5S vz,rr 1
1

r
vz,r D1d2vz,zz1d6S v r ,rz1

1

r
v r ,zD5a ṗ,z

(25b)

ṗ,rr 1
1

r
ṗ,r1 ṗ,zz5bFaS v̇ r ,r1

1

r
v̇ r1 v̇z,zD1

p̈

QG . (25c)

Equation~25! is independent ofC12 due to axisymmetric condi-
tions. The incremental boundary value problem is finally form
lated in terms of solid velocityv r andvz and fluid pressurep after
restating Eq.~2! as follows:

vz50, vz,r50, v r ,z50 and ṗ,z50 for

z56H and 0<r<R (26a)

v r50, vz,r50, v r ,z50 and ṗ,r50 for r 5R and

2H<z<H. (26b)

Trivial and Nontrivial Bifurcating Solutions. Fields of con-
stant solid velocity gradient and fluid pressure are obvious s
tions of Eqs.~25! and ~26!. The nontrivial bifurcating solutions
are sought in the following modes:

v r5V1J1~b1r !cos~b2z1u2! f ~ t ! (27a)

vz5V2J0~b1r !sin~b2z1u2! f ~ t ! (27b)

ṗ5PJ0~b1r !cos~b2z1u2! f ~ t ! (27c)

whereJn(x) is the Bessel function of the first kind andnth order,
and u2 denotes a phase shift. These modes satisfy the boun
conditions of Eq.~26! when b1 , b2 , and u2 are selected as
follows:

b1R50, 63.832, 67.016, 610.173, . . . ~roots of J150!
(28a)

b2H5
p

2
m2 for m2 integer (28b)
Journal of Applied Mechanics
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u25H 0 ~ for m2 even!

p

2
~ for m2 odd!

. (28c)

By substituting these modes into Eq.~25! and introducingf * so
that

f * 5b
ḟ ~ t !

f ~ t !
, (29)

the following relations are obtained:

F b1
2d11b2

2d3 b1b2d4 2ab1

b1b2d6 b1
2d51b2

2d2 2ab2

ab1f * ab2f * b1
21b2

21
f *

Q

G H V1

V2

P
J 5H 0

0
0
J .

(30)

From the third line in Eq.~30!, f * is given by

f * 5
2~b1

21b2
2!P

a~b1V11b2V2!1
P

Q

. (31)

The coefficientf * is thus independent of time and space an
hence, the solution of Eq.~29! is

f ~ t !5 f 0 exp~ f * t/b! (32)

wheref 0 represents an initial amplitude of the nontrivial bifurca
ing solution. Whenf * .0, f (t) grows exponentially with time and
eventually becomes infinite. Hence, the bifurcating solution g
erates a material instability. Whenf * <0, the bifurcating solution
dies out with time, and has little physical relevance. A set
nontrivial bifurcating solutions forV1 , V2 , andP exist when the
determinant of the matrix in Eq.~30! becomes zero. After defining
the wavelength ratio of the bifurcating mode as

L5
b2

b1
, (33)

the condition for the existence of nontrivial bifurcating solutio
in Eq. ~30! is

a2f *

b1
21b2

2 5
N~L!

D~L!
.0. (34)

The numerator and denominator of the left side of Eq.~34! are

N~L!5a1L41b1L21c1 , D~L!5a2L41b2L21c2
(35)

where

a15d2d3 , b15d1d21d3d52d4d6 , c15d1d5 (36a)

a252d32a1x, b252d12d21d41d62b1x,

c252d52c1x (36b)

x51/a2Q. (36c)

Three types of instability and associated conditions can
defined:

solid-fluid ~SF! instability for N~L!/D~L!.0 (37a)

infinite solid-fluid ~SF`! instability

for D~L!50 and N~L!Þ0 (37b)

solid ~S! instability for N~L!50 (37c)

The SF instability is obtained when there are modes with wav
length ratiosL satisfying Eq.~37a!. The SF` instability is a
particularSF instability with f * →1`, which corresponds to an
NOVEMBER 2002, Vol. 69 Õ 719
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Fig. 2 Dimensionless p * -q * domains of S, SF, and SF` instabilities for hy-
poelastic material with incompressible fluid „x*Ä0, nÄ0.3…
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infinite exponential growth, and a severe solid-fluid instabili
The S instability is the material instability obtained for the sol
alone without interstitial water. TheS instability is obtained by
settinga50 in Eq. ~30!, fully decoupling the solid and fluid, and
ignoring the interstitial fluid.SF instability can be physically in-
terpreted as the result of a rapidly growing flow of interstitial flu
through the pervious solid, which may create solid-fluid inter
tion forces and promote the emergence of nonuniform mode
deformation. In theory,SF instability could be detected by mea
suring the spatial fluctuation of fluid pressure within the mate
specimens tested in the laboratory.

Applications
The one and two-phase axisymmetric instabilities will be exa

ined for three particular types of rate-type constitutive equatio
~1! hypoelastic models,~2! elastoplastic models, and~3! Rudnicki
pressure-sensitive models.

Hypoelastic Model. The constitutive moduli of isotropic hy
poelastic models are~Bardet@4#!

C115C3352m1l, C135C315l and C445m (38)
MBER 2002
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wherem is the shear modulus andl the Lame’s modulus, which
are related to Poisson’s ration through

l5
2nm

122n
. (39)

It is convenient to introduce the following nondimensional stre
components and coefficients:

p* 52
s rr 1szz

2m
q* 5

s rr 2szz

2m
, and x* 5mx. (40)

The hypoelastic model is useful for developing closed-form a
lytical solutions for simple linear stability problems and compa
ing numerical and analytical results~e.g., Bardet@17#!. However,
the hypoelastic model has only two material parameters,
therefore limited capabilities in modeling realistically all types
material responses.

Figures 2 to 4 show thep* -q* domains ofS, SF, and SF`
instability for various cases of fluid and solid compressibility. B
definition, p* is positive in compression and negative in tensio
Thesep* -q* domains are symmetric about thep* - axis, and are
Fig. 3 Dimensionless p * -q * domains of S, SF, and SF` instabilities for hy-
poelastic material with compressible fluid „x*Ä0.5, nÄ0.3…
Transactions of the ASME
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Fig. 4 Dimensionless p * -q * domains of S, SF, and SF` instabilities for hy-
poelastic material with compressible fluid „x*Ä0.5, nÄ0.43…
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only represented for positive values ofq* . As shown in Fig. 2 for
incompressible fluid~i.e., x*50!, zero stress states are initiall
stable. Forq* 51 andp* .0, all types of instability emerge si
multaneously. Forp* ,22, SF and SF` instabilities appear in
areaA without S instability. As shown in Fig. 3, the size of area
shrinks with the compressibility of the interstitial fluid~i.e.,
x*50.5!. SF and S instabilities may occur simultaneously whe
p* decreases below 3. As shown in Fig. 4, the size of area A
shrinks as the solid becomes more incompressible~i.e., n50.43!,
and vanishes for incompressible material~i.e., n50.5!. In the in-
compressible limit,S, SF, and SF` instabilities may emerge
simultaneously.

Elastoplastic Mohr-Coulomb Model. The constitutive
moduli of elastoplasticity are~Hill @21# and Bardet@4#!

C1152m1l2
1

H8
@2mP111l~P3312P11!#

3@2mQ111l~Q3312Q11!#,

C3352m1l2
1

H8
@2mP331l~P3312P11!#

3@2mQ331l~Q3312Q11!#,

C135l2
1

H8
@2mP111l~P3312P11!#@2mQ331l~Q3312Q11!#,

C315l2
1

H8
@2mP331l~P3312P11!#@2mQ111l~Q3312Q11!#,

C445m

H85H1l~P3312P11!~P3312P11!12m~2P11Q111P33Q33!
(41)

whereH is the plastic modulus; andPi j andQi j are unit tensors
representing the flow and yield directions, respectively. Fo
Mohr-Coulomb material and axisymmetric conditions, the u
tensorsPi j and Qi j are related to the mobilized friction anglef
and the dilatancy anglec as follows:

P335
sinc22

A3~21sin2 c!
and P115

11sinc

A3~21sin2 c!
(42a)
echanics
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Q335
22~12sinf!

A2~322 sinf13 sin2 f!
and

Q115
11sinf

A2~322 sinf13 sin2 f!
(42b)

where the mobilized friction anglew and the dilatancy anglec are
defined by

sinf5Uszz2s rr

szz1s rr
U and

sinc5
2~d«zz

p 12d« rr
p !

d«zz
p 2d« rr

p 5
2~P3312P11!

P332P11
. (43)

Figure 5 shows an example of instability domain in thef2H/m
plane forn50.3, c5230 deg andx*50. The variations of elas-
toplastic moduli for fixed values ofn, c, andx* are characterized
solely by the values off andH/m, which are represented usin
the point M of coordinatesf2H/m in Fig. 5. When the stress
states are initially isotropic at the beginning of a shear loading,
point M is initially in the upper left corner, which corresponds
an elastic state (H@1) and no shear stress~f50!. As the shear
stress increases, point M moves down from the upper left co
and intersects the SF/S boundary, orSF`/SF boundary. Iff,8
deg, point M intersects first theSF/Sboundary for strain-softening
conditions (H,0). In this case,SF andS instabilities will occur
simultaneously. Iff.8 deg, point M will intersect theSF`/SF
boundary for either strain-softening, strain-hardening (H.0), or
perfectly plastic (H50) conditions. This implies thatSF` and/or
SF instabilities may emerge withoutS instabilities for contractant
elastoplastic materials. In other words,SF` and/orSF instabili-
ties are not necessarily generated byS instabilities.

Rudnicki Model. In the investigation of material instability
Rudnicki @22# proposed the following rate-independent consti
tive model for axisymmetric conditions, which generalizes m
constitutive models used in linear stability analyses

C1159K/41Gt , C1359Kn/2, C3159Kr * /4,

C335E/219Knr * /2, C445Gl , (44)

whereK, E, n, r * , Gl , andGt are material moduli, the physica
meanings of which are defined in Rudnicki@22# and Chau@7#.
NOVEMBER 2002, Vol. 69 Õ 721

 of Use: http://www.asme.org/about-asme/terms-of-use



722 Õ Vol. 69, NOV

Downloaded From: https://appliedmechanics
Fig. 5 Domain of S, SF, and SF` instabilities for elastoplastic contractant Mohr-
Coulomb material and incompressible fluid „nÄ0.3, cÄÀ30 deg and x*Ä0…

Fig. 6 Dimensionless p * -q * domains of S, SF, and SF` instabilities for Rudnic-
ki’s model for incompressible fluid „x*Ä0, Gl Õ2GtÄ0.5, K Õ2GtÄ1, nÄ0.3, and r *
Ä0.6…
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Figure 6 shows the domains of instability of Ruckniki’s model
the p* 2q* coordinates used for the hypoelastic model of Fi
2–4 for particular values of material parameters:Gl /2Gt50.5;
K/2Gt51; n50.3; r * 50.6; and incompressible interstitial flui
x*50. For this particular selection of model parameters, the
mains ofS, SF, andSF` instabilities are similar to those of Fig
2, except for the asymmetry about theq* -axis. As for hypoelastic
models,SF andSF` instabilities are not generated byS instabil-
ity in area A.

Discussion
A general mathematical framework and analytical solutio

have been derived for studying the two-phase instability of a
symmetric cylinders made of a wide variety of pervious sol
filled with a compressible/incompressible fluid. The present an
sis is based on the assumptions stated in Eqs.~17!, ~18!, and~21!.
The analysis holds provided that these mechanical assump
represent the material physics, but may break down in some
EMBER 2002
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cir-

cumstances, e.g., when Eqs.~18! and ~21! do not hold due to
capillary effects and bubble formation in the interstitial flu
~Schrefler et al.@11#!.

The analysis needs to be extended to nonaxisymmetric de
mations~e.g., strain localization!, which have been shown in th
case of dry solids to become the predominant modes of instab
when the axisymmetry constraints are removed~e.g., Chau
@7,23#!. The general framework and solutions also need to be
plied to constitutive models specific to geomechanics and inve
gated in the context of undrained triaxial testing. There is als
need to investigate the effects of two-phase instability on the
merical solutions of liquefaction problems in geomechanics, f
lowing the approach of Bardet@17# for hypoelastic materials.

Conclusions
The emergence of two-phase instability was investigated a

lytically in the case of pervious solid cylinders with voids fille
with an interstitial fluid. The analysis develops a mathemati
framework and analytical solutions that apply to a broad range
Transactions of the ASME
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Downloaded From
material models, and illustrates their application for specific ty
of solids including hypoelastic and elastoplastic models. For p
ticular values of stress states and material moduli, hypoelastic
elastoplastic models were found to undergo two-phase instab
and no solid instability. Two-phase instability can emerge in sta
solids due to the interaction between fluid flow and porous s
matrix. The general results of the present analysis are releva
geomechanics for studying instabilities in undrained triaxial te
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