109 research outputs found
Lawvere-Tierney sheaves in algebraic set theory
We present a solution to the problem of defining a counterpart in Algebraic
Set Theory of the construction of internal sheaves in Topos Theory. Our
approach is general in that we consider sheaves as determined by
Lawvere-Tierney coverages, rather than by Grothendieck coverages, and assume
only a weakening of the axioms for small maps originally introduced by Joyal
and Moerdijk, thus subsuming the existing topos-theoretic results.Comment: 33 pages; a revised version of the earlier paper "A general
construction of internal sheaves in algebraic set theory"; accepted for
publication in the Journal of Symbolic Logi
Formal concept analysis and structures underlying quantum logics
A Hilbert space induces a formal context, the Hilbert formal context , whose associated concept lattice is isomorphic to the lattice of closed subspaces of . This set of closed subspaces, denoted , is important in the development of quantum logic and, as an algebraic structure, corresponds to a so-called ``propositional system'', that is, a complete, atomistic, orthomodular lattice which satisfies the covering law.
In this paper, we continue with our study of the Chu construction by introducing the Chu correspondences between Hilbert contexts, and showing that the category of Propositional Systems, PropSys, is equivalent to the category of of Chu correspondences between Hilbert contextsUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Bigraphical modelling of architectural patterns
Selected for publication in FACS'2011 post-proceedings, to appear in Springer Lecture Notes in Computer ScienceArchery is a language for behavioural modelling of architectural patterns, supporting hierarchical composition and a type discipline. This paper extends Archery to cope with the patterns' structural dimension through a set of (re-)configuration combinators and constraints that all instances of a pattern must obey. Both types and instances of architectural patterns are semantically represented as bigraphical reactive systems and operations upon them as reaction rules. Such a bigraphical semantics provides a rigorous model for Archery patterns and reduces constraint verification in architectures to a type-checking problem.(undefined
Generalizations of Hedberg’s Theorem
Streicher’s axiom K or the uniqueness of identity proofs (UIP) is the statement that every identity type has at most one inhabitant. The groupoid interpretation by Hofmann and Streicher shows that this is not provable for an arbitrary type, but a theorem by Hedberg gives a sufficient condition. Types satisfying UIP are known as h-sets. The main contributions of this paper are: (i) Natural, more general sufficient conditions for a type being an h-set. (ii) A new characterization of h-sets. (iii) A new result inspired by these characterizations, with some applications. All the proofs have been formalized in Agda
Layer by layer - Combining Monads
We develop a method to incrementally construct programming languages. Our
approach is categorical: each layer of the language is described as a monad.
Our method either (i) concretely builds a distributive law between two monads,
i.e. layers of the language, which then provides a monad structure to the
composition of layers, or (ii) identifies precisely the algebraic obstacles to
the existence of a distributive law and gives a best approximant language. The
running example will involve three layers: a basic imperative language enriched
first by adding non-determinism and then probabilistic choice. The first
extension works seamlessly, but the second encounters an obstacle, which
results in a best approximant language structurally very similar to the
probabilistic network specification language ProbNetKAT
Involutive Categories and Monoids, with a GNS-correspondence
This paper develops the basics of the theory of involutive categories and
shows that such categories provide the natural setting in which to describe
involutive monoids. It is shown how categories of Eilenberg-Moore algebras of
involutive monads are involutive, with conjugation for modules and vector
spaces as special case. The core of the so-called Gelfand-Naimark-Segal (GNS)
construction is identified as a bijective correspondence between states on
involutive monoids and inner products. This correspondence exists in arbritrary
involutive categories
Quotient inductive-inductive types
Higher inductive types (HITs) in Homotopy Type Theory (HoTT) allow the definition of datatypes which have constructors for equalities over the defined type. HITs generalise quotient types and allow to define types which are not sets in the sense of HoTT (i.e. do not satisfy uniqueness of equality proofs) such as spheres, suspensions and the torus. However, there are also interesting uses of HITs to define sets, such as the Cauchy reals, the partiality monad, and the internal, total syntax of type theory. In each of these examples we define several types that depend on each other mutually, i.e. they are inductive-inductive definitions. We call those HITs quotient inductive-inductive types (QIITs).
Although there has been recent progress on the general theory of HITs, there isn't yet a theoretical foundation of the combination of equality constructors and induction-induction, despite having many interesting applications. In the present paper we present a first step towards a semantic definition of QIITs. In particular, we give an initial-algebra semantics and show that this is equivalent to the section induction principle, which justifies the intuitively expected elimination rules
System analysis and robustness
Software is increasingly embedded in a variety of physical contexts. This imposes new requirements on tools that support the design and analysis of systems. For instance, modeling embedded and cyberphysical systems needs to blend discrete mathematics, which is suitable for modeling digital components, with continuous mathematics, used for modeling physical components. This blending of continuous and discrete creates challenges that are absent when the discrete or the continuous setting are considered in isolation. We consider robustness, that is, the ability of an analysis of a model to cope with small amounts of imprecision in the model. Formally, we identify analyses with monotonic maps between complete lattices (a mathematical framework used for abstract interpretation and static analysis) and define robustness for monotonic maps between complete lattices of closed subsets of a metric space.</p
Higher Structures in M-Theory
The key open problem of string theory remains its non-perturbative completion
to M-theory. A decisive hint to its inner workings comes from numerous
appearances of higher structures in the limits of M-theory that are already
understood, such as higher degree flux fields and their dualities, or the
higher algebraic structures governing closed string field theory. These are all
controlled by the higher homotopy theory of derived categories, generalised
cohomology theories, and -algebras. This is the introductory chapter
to the proceedings of the LMS/EPSRC Durham Symposium on Higher Structures in
M-Theory. We first review higher structures as well as their motivation in
string theory and beyond. Then we list the contributions in this volume,
putting them into context.Comment: 22 pages, Introductory Article to Proceedings of LMS/EPSRC Durham
Symposium Higher Structures in M-Theory, August 2018, references update
- …