2,763 research outputs found

    The Origin of Fluorine: Abundances in AGB Carbon Stars Revisited

    Get PDF
    Revised spectroscopic parameters for the HF molecule and a new CN line list in the 2.3 mu region have been recently available, allowing a revision of the F content in AGB stars. AGB carbon stars are the only observationally confirmed sources of fluorine. Nowadays there is not a consensus on the relevance of AGB stars in its Galactic chemical evolution. The aim of this article is to better constrain the contribution of these stars with a more accurate estimate of their fluorine abundances. Using new spectroscopic tools and LTE spectral synthesis, we redetermine fluorine abundances from several HF lines in the K-band in a sample of Galactic and extragalactic AGB carbon stars of spectral types N, J and SC spanning a wide range of metallicities. On average, the new derived fluorine abundances are systematically lower by 0.33 dex with respect to previous determinations. This may derive from a combination of the lower excitation energies of the HF lines and the larger macroturbulence parameters used here as well as from the new adopted CN line list. Yet, theoretical nucleosynthesis models in AGB stars agree with the new fluorine determinations at solar metallicities. At low metallicities, an agreement between theory and observations can be found by handling in a different way the radiative/convective interface at the base of the convective envelope. New fluorine spectroscopic measurements agree with theoretical models at low and at solar metallicity. Despite this, complementary sources are needed to explain its observed abundance in the solar neighbourhood.Comment: 9 pages, 4 figures, accepted in A&

    Fluorine in AGB Carbon Stars Revisited

    Full text link
    A reanalysis of the fluorine abundance in three Galactic AGB carbon stars (TX Psc, AQ Sgr and R Scl) has been performed from the molecular HF (1-0) R9 line at 2.3358 μ\mum. High-resolution (R50000\sim 50000) and high signal to noise spectra obtained with the CRIRES spectrograph and the VLT telescope or from the NOAO archive (for TX Psc) have been used. Our abundance analysis uses the latest generation of MARCS model atmospheres for cool carbon rich stars. Using spectral synthesis in LTE we derive for these stars fluorine abundances that are systematically lower by 0.8\sim 0.8 dex in average with respect to the sole previous estimates by Jorissen, Smith & Lambert (1992). The possible reasons of this discrepancy are explored. We conclude that the difference may rely on the blending with C-bearing molecules (CN and C2_2) that were not properly taken into account in the former study. The new F abundances are in better agreement with the prediction of full network stellar models of low mass AGB stars. These models also reproduce the ss-process elements distribution in the sampled stars. This result, if confirmed in a larger sample of AGB stars, might alleviate the current difficulty to explain the largest [F/O] ratios found by Jorissen et al. In particular, it may not be necessary to search for alternative nuclear chains affecting the production of F in AGB stars.Comment: 25 pages, 3 figures. to be appear in The Astrophysical Journal (Jan 2009 issue

    Measurement of the Higgs Boson Mass with a Linear e+e- Collider

    Full text link
    The potential of a linear e+e- collider operated at a centre-of-mass energy of 350 GeV is studied for the measurement of the Higgs boson mass. An integrated luminosity of 500 fb-1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass measurement is estimated to be 40, 65 and 70 MeV, respectively. The effects of beam related systematics, namely a bias in the beam energy measurement, the beam energy spread and the luminosity spectrum due to beamstrahlung, on the precision of the Higgs boson mass measurement are investigated. In order to keep the systematic uncertainty on the Higgs boson mass well below the level of the statistical error, the beam energy measurement must be controlled with a relative precision better than 10-4.Comment: 19 pages, 10 Figure

    Deep Mixing in Evolved Stars. II. Interpreting Li Abundances in RGB and AGB Stars

    Full text link
    We reanalyze the problem of Li abundances in red giants of nearly solar metallicity. After an outline of the problems affecting our knowledge of the Li content in low-mass stars (M<3Mo), we discuss deep-mixing models for the RGB stages suitable to account for the observed trends and for the correlated variations of the carbon isotope ratio; we find that Li destruction in these phases is limited to masses below about 2.3 Mo. Subsequently, we concentrate on the final stages of evolution for both O-rich and C-rich AGB stars. Here, the constraints on extra-mixing phenomena previously derived from heavier nuclei (from C to Al), coupled to recent updates in stellar structure models (including both the input physics and the set of reaction rates used), are suitable to account for the observations of Li abundances below A(Li)= log e(Li) = 1.5 (and sometimes more). Also their relations with other nucleosynthesis signatures of AGB phases (like the abundance of F, the C/O and 12C/13C ratios) can be explained. This requires generally moderate efficiencies (\dot M <= 0.3 - 0.5 x 10^-6 Mo/yr) for non-convective mass transport. At such rates, slow extra-mixing does not modify remarkably Li abundances in early-AGB phases; on the other hand, faster mixing encounters a physical limit in destroying Li, set by the mixing velocity. Beyond this limit, Li starts to be produced; therefore its destruction on the AGB is modest. Li is then significantly produced by the third dredge up. We also show that effective circulation episodes, while not destroying Li, would easily bring the 12C/13C ratios to equilibrium, contrary to the evidence in most AGB stars, and would burn F beyond the limits shown by C(N) giants. Hence, we do not confirm the common idea that efficient extra-mixing drastically reduces the Li content of C-stars with respect to K-M giants.Comment: 56 pages, 21 13 figures, ApJ submitte

    Evolution, nucleosynthesis and yields of low mass AGB stars at different metallicities (II): the FRUITY database

    Full text link
    By using updated stellar low mass stars models, we can systematically investigate the nucleosynthesis processes occurring in AGB stars, when these objects experience recurrent thermal pulses and third dredge-up episodes. In this paper we present the database dedicated to the nucleosynthesis of AGB stars: the FRUITY (FRANEC Repository of Updated Isotopic Tables & Yields) database. An interactive web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 < M/Msun < 3.0 and metallicities 1e-3 < Z < 2e-2, is discussed here. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parametrization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the third dredge-up efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find a good agreement with observations.Comment: Accepted for Publication on The Astrophysical Journal Supplement

    Chemical evolution of star clusters

    Full text link
    I discuss the chemical evolution of star clusters, with emphasis on old globular clusters, in relation to their formation histories. Globular clusters clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of globular clusters in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the globular clusters formed. Instead, a formation deep within the proto-Galaxy or within dark-matter minihaloes might be favoured. Not all globular clusters may have formed and evolved similarly. In particular, we may need to distinguish Galactic halo from Galactic bulge clusters.Comment: 27 pages, 2 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 6 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. LaTeX, requires rspublic.cls style fil

    Magnetic-buoyancy-induced mixing in AGB stars: Fluorine nucleosynthesis at different metallicities

    Get PDF
    DV and SC acknowledge S. Bagnulo for fruitful discussions. DV acknowledges financial support from the German-Israeli Foundation (GIF No. I-1500-303.7/2019). CA acknowledges financial support from the Agencia Estatal de Investigacion of the Spanish Ministerio de Ciencia e Innovacion through the FEDER founds projects PGC2018-095317-B-C2.Asymptotic giant branch (AGB) stars are considered to be among the most significant contributors to the fluorine budget in our Galaxy. While observations and theory agree at close-to-solar metallicity, stellar models at lower metallicities overestimate the fluorine production with respect to that of heavy elements. We present F-19 nucleosynthesis results for a set of AGB models with different masses and metallicities in which magnetic buoyancy acts as the driving process for the formation of the C-13 neutron source (the so-called C-13 pocket). We find that F-19 is mainly produced as a result of nucleosynthesis involving secondary N-14 during convective thermal pulses, with a negligible contribution from the N-14 present in the C-13 pocket region. A large F-19 production is thus prevented, resulting in lower fluorine surface abundances. As a consequence, AGB stellar models with mixing induced by magnetic buoyancy at the base of the convective envelope agree well with available fluorine spectroscopic measurements at low and close-to-solar metallicity.German-Israeli Foundation for Scientific Research and Development I-1500-303.7/2019Agencia Estatal de Investigacion of the Spanish Ministerio de Ciencia e Innovacion through the FEDER founds projects PGC2018-095317-B-C

    Chemical evolution with rotating massive star yields II. A new assessment of the solar s- and r- process components

    Get PDF
    The decomposition of the Solar system abundances of heavy isotopes into their sand r- components plays a key role in our understanding of the corresponding nuclear processes and the physics and evolution of their astrophysical sites. We present a new method for determining the s- and r- components of the Solar system abundances, fully consistent with our current understanding of stellar nucleosynthesis and galactic chemical evolution. The method is based on a study of the evolution of the solar neighborhood with a state-of-the-art 1-zone model, using recent yields of low and intermediate mass stars as well as of massive rotating stars. We compare our results with previous studies and we provide tables with the isotopic and elemental contributions of the s- and r-processes to the Solar system compositionThis article is based upon work partially supported from the “ChETEC” COST Action (CA16117) of COST (European Cooperation in Science and Technology). C.A. acknowledges in part to the Spanish grants AYA2015-63588-P and PGC2018-095317-B-C21 within the European Founds for Regional Development (FEDER)
    corecore