965 research outputs found

    Genotoxic mixtures and dissimilar action: Concepts for prediction and assessment

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund. This article is distributed under the terms of the creative commons Attribution license which permits any use, distribution, and reproduction in any medium, provided the original author(s)and the source are credited.Combinations of genotoxic agents have frequently been assessed without clear assumptions regarding their expected (additive) mixture effects, often leading to claims of synergisms that might in fact be compatible with additivity. We have shown earlier that the combined effects of chemicals, which induce micronuclei (MN) in the cytokinesis-block micronucleus assay in Chinese hamster ovary-K1 cells by a similar mechanism, were additive according to the concept of concentration addition (CA). Here, we extended these studies and investigated for the first time whether valid additivity expectations can be formulated for MN-inducing chemicals that operate through a variety of mechanisms, including aneugens and clastogens (DNA cross-linkers, topoisomerase II inhibitors, minor groove binders). We expected that their effects should follow the additivity principles of independent action (IA). With two mixtures, one composed of various aneugens (colchicine, flubendazole, vinblastine sulphate, griseofulvin, paclitaxel), and another composed of aneugens and clastogens (flubendazole, doxorubicin, etoposide, melphalan and mitomycin C), we observed mixture effects that fell between the additivity predictions derived from CA and IA. We achieved better agreement between observation and prediction by grouping the chemicals into common assessment groups and using hybrid CA/IA prediction models. The combined effects of four dissimilarly acting compounds (flubendazole, paclitaxel, doxorubicin and melphalan) also fell within CA and IA. Two binary mixtures (flubendazole/paclitaxel and flubendazole/doxorubicin) showed effects in reasonable agreement with IA additivity. Our studies provide a systematic basis for the investigation of mixtures that affect endpoints of relevance to genotoxicity and show that their effects are largely additive.UK Food Standards Agenc

    Extending the applicability of the dose addition model to the assessment of chemical mixtures of partial agonists by using a novel toxic unit extrapolation method

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Dose addition, a commonly used concept in toxicology for the prediction of chemical mixture effects, cannot readily be applied to mixtures of partial agonists with differing maximal effects. Due to its mathematical features, effect levels that exceed the maximal effect of the least efficacious compound present in the mixture, cannot be calculated. This poses problems when dealing with mixtures likely to be encountered in realistic assessment situations where chemicals often show differing maximal effects. To overcome this limitation, we developed a pragmatic solution that extrapolates the toxic units of partial agonists to effect levels beyond their maximal efficacy. We extrapolated different additivity expectations that reflect theoretically possible extremes and validated this approach with a mixture of 21 estrogenic chemicals in the E-Screen. This assay measures the proliferation of human epithelial breast cancers. We found that the dose-response curves of the estrogenic agents exhibited widely varying shapes, slopes and maximal effects, which made it necessary to extrapolate mixture responses above 14% proliferation. Our toxic unit extrapolation approach predicted all mixture responses accurately. It extends the applicability of dose addition to combinations of agents with differing saturating effects and removes an important bottleneck that has severely hampered the use of dose addition in the past. © 2014 Scholze et al

    Diabetes is an independent predictor for severe osteoarthritis: Results from a longitudinal cohort study

    Get PDF
    OBJECTIVE-To evaluate if type 2 diabetes is an independent risk predictor for severe oste-oarthritis (OA). RESEARCH DESIGN AND METHODS-Population-based cohort study with an age-and sex-stratified random sample of 927 men and women aged 40-80 years and followed over 20 years (1990-2010). RESULTS-Rates of arthroplasty (95% CI) were 17.7 (9.4-30.2) per 1,000 person-years in patients with type 2 diabetes and 5.3 (4.1-6.6) per 1,000 person-years in those without (P < 0.001). Type 2 diabetes emerged as an independent risk predictor for arthroplasty: hazard ratios (95% CI), 3.8 (2.1-6.8) (P < 0.001) in an unadjusted analysis and 2.1 (1.1-3.8) (P = 0.023) after adjustment for age, BMI, and other risk factors for OA. The probability of arthroplasty increased with disease duration of type 2 diabetes and applied to men and women, as well as subgroups according to age and BMI. Our findings were corroborated in cross-sectional evaluation by more severe clinical symptoms of OA and structural joint changes in subjects with type 2 diabetes compared with those without type 2 diabetes. CONCLUSIONS-Type 2 diabetes predicts the development of severe OA independent of age and BMI. Our findings strengthen the concept of a strong metabolic component in the pathogenesis of OA.\ua9 2013 by the American Diabetes Association

    Diabetes is an independent predictor for severe osteoarthritis: Results from a longitudinal cohort study

    Get PDF
    OBJECTIVE-To evaluate if type 2 diabetes is an independent risk predictor for severe oste-oarthritis (OA). RESEARCH DESIGN AND METHODS-Population-based cohort study with an age-and sex-stratified random sample of 927 men and women aged 40-80 years and followed over 20 years (1990-2010). RESULTS-Rates of arthroplasty (95% CI) were 17.7 (9.4-30.2) per 1,000 person-years in patients with type 2 diabetes and 5.3 (4.1-6.6) per 1,000 person-years in those without (P < 0.001). Type 2 diabetes emerged as an independent risk predictor for arthroplasty: hazard ratios (95% CI), 3.8 (2.1-6.8) (P < 0.001) in an unadjusted analysis and 2.1 (1.1-3.8) (P = 0.023) after adjustment for age, BMI, and other risk factors for OA. The probability of arthroplasty increased with disease duration of type 2 diabetes and applied to men and women, as well as subgroups according to age and BMI. Our findings were corroborated in cross-sectional evaluation by more severe clinical symptoms of OA and structural joint changes in subjects with type 2 diabetes compared with those without type 2 diabetes. CONCLUSIONS-Type 2 diabetes predicts the development of severe OA independent of age and BMI. Our findings strengthen the concept of a strong metabolic component in the pathogenesis of OA.© 2013 by the American Diabetes Association

    Can we identify patients with high risk of osteoarthritis progression who will respond to treatment? A focus on epidemiology and phenotype of osteoarthritis

    Get PDF
    Osteoarthritis is a syndrome affecting a variety of patient profiles. A European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis and the European Union Geriatric Medicine Society working meeting explored the possibility of identifying different patient profiles in osteoarthritis. The risk factors for the development of osteoarthritis include systemic factors (e.g., age, sex, obesity, genetics, race, and bone density) and local biomechanical factors (e.g., obesity, sport, joint injury, and muscle weakness); most also predict disease progression, particularly joint injury, malalignment, and synovitis/effusion. The characterization of patient profiles should help to better orientate research, facilitate trial design, and define which patients are the most likely to benefit from treatment. There are a number of profile candidates. Generalized, polyarticular osteoarthritis and local, monoarticular osteoarthritis appear to be two different profiles; the former is a feature of osteoarthritis co-morbid with inflammation or the metabolic syndrome, while the latter is more typical of post-trauma osteoarthritis, especially in cases with severe malalignment. Other biomechanical factors may also define profiles, such as joint malalignment, loss of meniscal function, and ligament injury. Early- and late-stage osteoarthritis appear as separate profiles, notably in terms of treatment response. Finally, there is evidence that there are two separate profiles related to lesions in the subchondral bone, which may determine benefit from bone-active treatments. Decisions on appropriate therapy should be made considering clinical presentation, underlying pathophysiology, and stage of disease. Identification of patient profiles may lead to more personalized healthcare, with more targeted treatment for osteoarthritis

    The Joint Action of Sesquiterpene Lactones from Leaves as an Explanation for the Activity of Cynara cardunculus

    Get PDF
    The work described herein is a continuation of a previous study centered on the bioprospect of cardoon (Cynara cardunculus) leaf extracts through the isolation of secondary metabolites with phytotoxic activity. Chromatographic fractionations of the ethyl acetate extract and spectroscopic analysis showed that the majority of the components were sesquiterpene lactones. Of these compounds, aguerin B, grosheimin, and cynaropicrin were very active on etiolated wheat coleoptile, standard target species, and weed growth. The joint action of binary mixtures of these three active sesquiterpene lactones and one nonactive compound (11,13-dihydroxy-8-desoxygrosheimin) was studied. The activities of fixed-ratio mixtures were assessed on wheat coleoptile. The results can be interpreted with respect to a reference model by considering dose−response analyses and isobolograms with linear regression analyses. A total of 17 binary mixtures at different levels of inhibition (ED25, ED50, and ED75) were studied, and predominantly they responded additively (25). Deviations from additivity included seven synergistic responses and two antagonistic responses. The joint action of major sesquiterpene lactones isolated from C. cardunculus can explain the activities observed in extracts and fractions. The results reported here reiterate the utility of the wheat coleoptile bioassay as a quick tool to detect potential synergistic effects in binary mixtures

    Anti-androgens act jointly in suppressing spiggin concentrations in androgen-primed female three-spined sticklebacks - Prediction of combined effects by concentration addition

    Get PDF
    This is the post-print version of the final paper published in Aquatic Toxicology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Increasing attention is being directed at the role played by anti-androgenic chemicals in endocrine disruption of wildlife within the aquatic environment. The co-occurrence of multiple contaminants with anti-androgenic activity highlights a need for the predictive assessment of combined effects, but information about anti-androgen mixture effects on wildlife is lacking. This study evaluated the suitability of the androgenised female stickleback screen (AFSS), in which inhibition of androgen-induced spiggin production provides a quantitative assessment of anti-androgenic activity, for predicting the effect of a four component mixture of anti-androgens. The anti-androgenic activity of four known anti-androgens (vinclozolin, fenitrothion, flutamide, linuron) was evaluated from individual concentration-response data and used to design a mixture containing each chemical at equipotent concentrations. Across a 100-fold concentration range, a concentration addition approach was used to predict the response of fish to the mixture. Two studies were conducted independently at each of two laboratories. By using a novel method to adjust for differences between nominal and measured concentrations, good agreement was obtained between the actual outcome of the mixture exposure and the predicted outcome. This demonstrated for the first time that androgen receptor antagonists act in concert in an additive fashion in fish and that existing mixture methodology is effective in predicting the outcome, based on concentration-response data for individual chemicals. The sensitivity range of the AFSS assay lies within the range of anti-androgenicity reported in rivers across many locations internationally. The approach taken in our study lays the foundations for understanding how androgen receptor antagonists work together in fish and is essential in informing risk assessment methods for complex anti-androgenic mixtures in the aquatic environment.European Commission and Natural Environment Research Council

    Healthy obesity and risk of accelerated functional decline and disability

    Get PDF
    BACKGROUND/OBJECTIVES: Some obese adults have a normal metabolic profile and are considered 'healthy', but whether they experience faster ageing than healthy normal-weight adults is unknown. We compared decline in physical function, worsening of bodily pain, and likelihood of future mobility limitation and disability between these groups. SUBJECTS/METHODS: This was a population-based observational study using repeated measures over 2 decades (Whitehall II cohort data). Normal-weight (body mass index (BMI) 18.5-24.9 kg/m(2)), overweight (25.0-29.9 kg/m(2)), and obese (⩾30.0 kg/m(2)) adults were considered metabolically healthy if they had 0 or 1 of 5 risk factors (hypertension, low high-density lipoprotein cholesterol, high triacylglycerol, high blood glucose, and insulin resistance) in 1991/94. Decline in physical function and worsening of bodily pain based on change in Short Form Health Survey items using 8 repeated measures over 18.8 years (1991/94-2012/13) was compared between metabolic-BMI groups using linear mixed models. Odds of mobility limitation based on objective walking speed (slowest tertile) and of disability based on limitations in ⩾1 of 6 basic activities of daily living, each using 3 repeated measures over 8.3 years (2002/04-2012/13), were compared using logistic mixed models. RESULTS: In multivariable-adjusted mixed models on up to 6635 adults (initial mean age 50 years; 70% male), healthy normal-weight adults experienced a decline in physical function of -3.68 (95% CI=-4.19, -3.16) score units per decade; healthy obese adults showed an additional -3.48 (-4.88, -2.08) units decline. Healthy normal-weight adults experienced a -0.49 (-0.12, 1.11) score unit worsening of bodily pain per decade; healthy obese adults had an additional -2.23 (-0.69, -3.78) units worsening. Healthy obesity versus healthy normal-weight conferred 3.39 (2.29, 5.02) times higher odds of mobility limitation and 3.75 (1.94, 7.24) times higher odds of disability. CONCLUSIONS: Our results suggest that obesity, even if metabolically healthy, accelerates age-related declines in functional ability and poses a threat to independence in older age.International Journal of Obesity accepted article preview online, 21 February 2017. doi:10.1038/ijo.2017.51

    Chemical combination effects predict connectivity in biological systems

    Get PDF
    Efforts to construct therapeutically useful models of biological systems require large and diverse sets of data on functional connections between their components. Here we show that cellular responses to combinations of chemicals reveal how their biological targets are connected. Simulations of pathways with pairs of inhibitors at varying doses predict distinct response surface shapes that are reproduced in a yeast experiment, with further support from a larger screen using human tumour cells. The response morphology yields detailed connectivity constraints between nearby targets, and synergy profiles across many combinations show relatedness between targets in the whole network. Constraints from chemical combinations complement genetic studies, because they probe different cellular components and can be applied to disease models that are not amenable to mutagenesis. Chemical probes also offer increased flexibility, as they can be continuously dosed, temporally controlled, and readily combined. After extending this initial study to cover a wider range of combination effects and pathway topologies, chemical combinations may be used to refine network models or to identify novel targets. This response surface methodology may even apply to non-biological systems where responses to targeted perturbations can be measured
    corecore