404 research outputs found

    Torus invariant divisors

    Full text link
    Using the language of polyhedral divisors and divisorial fans we describe invariant divisors on normal varieties X which admit an effective codimension one torus action. In this picture X is given by a divisorial fan on a smooth projective curve Y. Cartier divisors on X can be described by piecewise affine functions h on the divisorial fan S whereas Weil divisors correspond to certain zero and one dimensional faces of it. Furthermore we provide descriptions of the divisor class group and the canonical divisor. Global sections of line bundles O(D_h) will be determined by a subset of a weight polytope associated to h, and global sections of specific line bundles on the underlying curve Y.Comment: 16 pages; 5 pictures; small changes in the layout, further typos remove

    Simulations of Ground Motion in the Los Angeles Basin Based upon the Spectral-Element Method

    Get PDF
    We use the spectral-element method to simulate ground motion generated by two recent and well-recorded small earthquakes in the Los Angeles basin. Simulations are performed using a new sedimentary basin model that is constrained by hundreds of petroleum-industry well logs and more than 20,000 km of seismic reflection profiles. The numerical simulations account for 3D variations of seismic-wave speeds and density, topography and bathymetry, and attenuation. Simulations for the 9 September 2001 M_w 4.2 Hollywood earthquake and the 3 September 2002 M_w 4.2 Yorba Linda earthquake demonstrate that the combination of a detailed sedimentary basin model and an accurate numerical technique facilitates the simulation of ground motion at periods of 2 sec and longer inside the basin model and 6 sec and longer in the regional model. Peak ground displacement, velocity, and acceleration maps illustrate that significant amplification occurs in the basin

    Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2

    Full text link
    The peculiar band structure of semimetals exhibiting Dirac and Weyl crossings can lead to spectacular electronic properties such as large mobilities accompanied by extremely high magnetoresistance. In particular, two closely neighbouring Weyl points of the same chirality are protected from annihilation by structural distortions or defects, thereby significantly reducing the scattering probability between them. Here we present the electronic properties of the transition metal diphosphides, WP2 and MoP2, that are type-II Weyl semimetals with robust Weyl points. We present transport and angle resolved photoemission spectroscopy measurements, and first principles calculations. Our single crystals of WP2 display an extremely low residual low-temperature resistivity of 3 nohm-cm accompanied by an enormous and highly anisotropic magnetoresistance above 200 million % at 63 T and 2.5 K. These properties are likely a consequence of the novel Weyl fermions expressed in this compound. We observe a large suppression of charge carrier backscattering in WP2 from transport measurements.Comment: Appeared in Nature Communication

    Charakterisierung des elektrochemischen Mikroanalysesystems ELMAS

    Get PDF
    Am Forschungszentrum Karlsruhe wurde im Rahmen des Projekts Mikrosystemtechnik das modular aufgebaute elektrochemische Mikroanalysesystem ELMAS unter Verwendung von ISFET-Mikrosensoren und gasfördernden Mikromembranpumpen entwickelt. Der Lösungstransport erfolgt indirekt über die Druckänderungen im Luft- volumen, das sich über der Lösung im Vorratsbehälter befindet. Die pH-ISFETs zeigen ein schnelles Ansprechverhalten und mit Flußraten von 200-300 µl/min sind Zykluszeiten für die Messung und Sensorkalibrierung von 30-60 s realisierbar. Bei Erhöhung der Flußraten sinkt die Zykluszeit, der Lösungsverbrauch hingegen nimmt zu. Für eine Messung sind ca. 50 µl Analyt und maximal 70 µl Kalibrierlösung erforderlich. Aufgrund des Gaspuffers im Vorratsgefäß ist der Fluidstrom gegenüber den Schaltsignalen der Pumpen um 5 s verzögert

    Somatostatin subtype-2 receptor-targeted metal-based anticancer complexes

    Get PDF
    Conjugates of a dicarba analogue of octreotide, a potent somatostatin agonist whose receptors are overexpressed on tumor cells, with [PtCl 2(dap)] (dap = 1-(carboxylic acid)-1,2-diaminoethane) (3), [(η 6-bip)Os(4-CO 2-pico)Cl] (bip = biphenyl, pico = picolinate) (4), [(η 6-p-cym)RuCl(dap)] + (p-cym = p-cymene) (5), and [(η 6-p-cym)RuCl(imidazole-CO 2H)(PPh 3)] + (6), were synthesized by using a solid-phase approach. Conjugates 3-5 readily underwent hydrolysis and DNA binding, whereas conjugate 6 was inert to ligand substitution. NMR spectroscopy and molecular dynamics calculations showed that conjugate formation does not perturb the overall peptide structure. Only 6 exhibited antiproliferative activity in human tumor cells (IC 50 = 63 ± 2 μ in MCF-7 cells and IC 50 = 26 ± 3 μ in DU-145 cells) with active participation of somatostatin receptors in cellular uptake. Similar cytotoxic activity was found in a normal cell line (IC 50 = 45 ± 2.6 μ in CHO cells), which can be attributed to a similar level of expression of somatostatin subtype-2 receptor. These studies provide new insights into the effect of receptor-binding peptide conjugation on the activity of metal-based anticancer drugs, and demonstrate the potential of such hybrid compounds to target tumor cells specifically. © 2012 American Chemical Society
    corecore