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ABSTRACT 

The concept of a partial automated design optimization 
and its first application on the improvement of a micro-
pump design is desrcribed. Starting with an analog simu-
lation model an evolutionary algorithm is used to modify 
the parameters of this model until an optimal behaviour of 
the system is obtained. The quality of the optimization 
depends highly on the quality of the simulation model 
thus we give an outlook on a concept for improving the 
analog simulation model by using FEM results. 

INTRODUCTION 

Industrial applications of microsystems require short 
development times as well as reliable designs comp arable 
to the state of the art in micro electronics. To achieve this 
goal CAD based design techniques and simulation is 
necessary but not sufficient as outlined below. During 
the design process the engineer is faced with an ex-
tremely large search space of possible design solutions 
and parameterizations. Although a great percentage of 
the search space can be dismissed due to available 
knowledge and the experience gained from previous 
designs in most cases the remaining search space will be 
still far too large for a systematical investigation. Thus a 
trial-and-error process is started, which can be described 
as  poking in the fog rather than a systematic search. It is 
mainly based on three properties: the experience and 
knowledge of the engineer, his attitude and on luck. To 
overcome this unsatisfactory situation a more systematic 
exploration of the search space would be necessary. 

The overall idea of the concept presented in this paper is 
to substitute the human in Fig.1 by an automated explorer 
and to involve the engineer in high level decision making 
only. The task of the explorer is to implement an “intelli-
gent” search focusing on promising areas of the search 
space, avoiding suboptima and adapting itself to the 
search landscape on hand. The proposed explorer will 
utilize an adaptive search technique called GLEAM. The 
GLEAM (Genetic Learning Algorithms and Methods) 
concept [1] utilizes hierarchical list-like data structures of 
genes and representation specific genetic operators. It 
incorporates aspects of Genetic Algorithms [2] and the 
Evolution Strategy [3]. 

Chapter 2 introduces the overall concept, the involved 
simulator and the idea of Evolutionary Algorithms. Chap-
ter 3 describes our first design example, the micropump, 
its model and the first optimization results. Chapter 4 
motivates the need for both improved simulation model-
ling and models and gives an outlook to further work on 
the adaptive search method itself. 

CONCEPT 

The evaluation of a given design will in many cases be 
done by simulation. The result of a simulation run is the 
computation of values for the system properties of inter-
est. Using these values the design engineer constructs a 
quality measure to assess the design either intuitively or 
more explicitly by calculating some reference numbers 
which can be weighted and summed up in order to form a 
single quality value. Thus a multicriteria evaluation can 
be done which is the base for a multicriteria optimization 
by ranking the designs suggested so far. The quality 
value is used to direct the search process by the auto-
mated explorer. The task of the engineer is now focused 
on the definition of appropriate global designs, both the 
constraints and the parameters, and the associated 
evaluation functions and weights. The latter means to 
define the design goals and the lines of compromise. 
Based on the results of some optimization runs these 
global terms and figures have to be readjusted in order to 
achieve a satisfactory solution. This scenario still reflects 
an iterative design process but the work of the human 
concentrates on much higher levels of abstraction and 
the evolutionary algorithm now investigates the space of 
possible solutions which is done much more thoroughly 
as the strategy is not limited by the human way of think-
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 Fig. 1: Conventional Design Process 
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ing. The achieved results are in general of higher quality 
and provided that enough computer power is available 
also be achieved in a reasonable time. 

Analog Simulation with ELDO 

The ELDO®-system is a tool for analog and mixed signal 
simulation. Analog models are usually derived analyti-
cally and their simulation can be done in short time. For 
circuit simulators like SPICE it is necessary to build the 
model with electrical devices as resistors and capacities. 
This can be done because the behaviour of a system can 
be described with a mathematical equation which can 
often be alternately described by an electrical network 
where only the parameters are different. For those com-
ponents, which can not be described in analogy to an 
electrical network, it is necessary to prepare tables or to 
use controlled sources. In contrast to that the analog 
hardware description language (HDL-A) of the ELDO-
system allows to use mathematical equations explicitly 
[4]. Thus various physical domains for example electrical, 
mechanical, thermal or fluidic can be described with one 
common language. This is important in those cases where 
heterogeneous systems have to be simulated. 

Evolutionary Algorithms 

The search space our automated explorer is faced with 
will be in general multimodal, highly non-linear, more or 
less high dimensional, restricted and discontinuous. In 
those (few) cases of unimodal and continuous spaces 
simpler techniques like hill climbing [5,6] are absolutely 
sufficient. But in the general case a more powerful adap-
tive search technique like GLEAM is necessary. The 
concept of combining the traditional approach of Genetic 
Algorithms and Evolution Strategies with modern com-
puter science and data modelling has approved its per-
formance in such different areas of application as ma-
chine learning [7], robot path planning [7,8],  resource 
planning [9] and job shop scheduling [9,10]. An impor-
tant advantage of GLEAM compared to other adaptive 
search techniques like Simulated Annealing [11] or 
Threshold Acceptance [12] is its explicit parallelism which 
allows a “natural” parallelization with linear speed up 
[10,13].  

Due to the lack of space we can give only a very brief 
description of the GLEAM concept here. It is based on 
the principles of evolution, i.e. a set of possible design 
solutions forms a “population”, which is changed (muta-
tion) and which produces offsprings by mixing their in-
formation (crossover). The resulting offsprings  are 
evaluated and in order to their fitness they will be either 
accepted or rejected (survival of the fittest). By this 
means better solutions evolve from generation to genera-
tion. It is more a breeding process rather than a calcula-
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tion of a solution, like engineers are used to do. The 
process is continued until a termination criterion like 
elapsed time or a specified quality is reached. The result 
of such a run is not a single but a set of in most cases 
different solutions of a more or less high quality. The 
resulting quality depends on the details of the evaluation 
formulas, the degrees of freedom and on the time or 
amount of generations spend in the search process. 

Design Optimization Environment 

Our simulation and optimization tool environment 
(SIMOT) consists at the present stage of implementation 
of two parts, a genetic engine based on GLEAM and 
tailored for the needs of multicriteria parameter optimiza-
tion and a powerful simulation tool, here ELDO as shown 
in Fig. 2. Both software components are linked via pipes 
in order to achieve a fast communication. Restrictions are 
as far as possible already taken into account by the Ge-
netic Engine, see also the last chapter.  

As the evaluation is very sensitive to the overall search 
process, we will take a closer look to it. In most cases 
some criteria will contradict each other; e.g. a high pres-
sure of a pump will decrease the flow rate and vice versa. 
By adjusting the weights the direction of compromise for 
guiding the search process can be expressed. Restric-
tions can in general be incorporated in the search process 
in two ways. Either the simulation is stopped when the 
restriction is met and the proposed solution is rejected or 
the simulation is continued but the resulting fitness value 
is modified by a penalty function. The idea of the latter 
approach is to guide the search from prohibited areas of 
the search space to legal ones rather than leaving it with 
no information how to overcome the rejection. As de-
signs are usually highly restricted this is an important 
technique to meet these restrictions.  

Fig. 3 demonstrates this using the example of the heater 
temperature of our pump. If the heater gets to hot it will 
burn through. So this is a restriction which has to be met 
under all circumstances. Nevertheless we allow the ex-
ceeding of the given limit (here 850 degrees Kelvin) dur-
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 Fig. 2: Part of SIMOT (Simulation and Optimization 
Tool Environment 



ing the simulation but apply the penalty function. It de-
livers a factor of 1.0, if the restriction is just fulfilled, as 
shown in the right part of Fig 3. In those cases where the 
temperature is higher, the overall fitness is multiplied by 
the computed factor according to the shown exponential 
function. As with increased temperature the penalty 
factor and with it the resulting fitness drastically drop the 
search process is quasi pushed to the legal parts of the 
search space. The left part of the figure shows the origi-
nal fitness function for the temperature and how a wanted 
low temperature of about 600 degrees Kelvin can be in-
corporated into it. The increase of the fitness is signifi-
cantly lowered when the desired value is reached. On the 
other hand further improvements on the temperature are 
still honored. 

APPLICATION EXAMPLE: MICROPUMP 

The method described above is applicable to optimize the 
design of various (micro-)systems. Our first application is 
the optimization of a thermo -pneumatic-driven micropump 
which was developed at the IMT (Institute of Microstruc-

tural Engineering), another institute of our research cen-
tre [15]. Fig 4 shows a block of four of these micropumps. 
Each pump consists of a heating coil, which can be easily 
identified, two passive valves and one inlet and one 
outlet. The pumps are already assembled with a cable for 
the power supply.  
A schematic overview of the pump together with the 
analog model is shown in Fig. 5. During the heating 
phase the heating coil, which is mounted on the mem-
brane warms up the gas in the closed actor chamber. The 
resulting expansion of the gas causes an elastic deforma-
tion of the membrane, which presses the gas in the chan-
nel of the pump through the outlet valve. This phase is 
shown in Fig. 5. This phase ends, when the current is 
switched of and the cooling phase starts. During the 
cooling process the pressure in the actor chamber drops 
and the membrane moves back. Thus the passive outlet 
valve closes, the inlet valves opens and new gas streams 
into the pump channel. This pump cycle is repeated with 
a frequency of about 30 Hertz. 

 

 

 

Fig. 3: Fitness Calculation: Fitness Function (left part) and Penalty Factor (right part) 

Fig. 4: Block of four micropumps with assembled connectors 

Flow Rate  0.22 ml/min 

Frequency     30 Hz 

max Outlet Pressure  130 hPa 

Geometry [mm] 7 x 10 x 1 



Model of the Micropump 

The first model of the micropump was an analogous 
model, see Fig. 5. Resistors, capacities and sources (lump 
elements) are the devices with which the heat flow and 
the volume flow are described. The electrical, the thermal 
and the pneumatic domain are included in this model. In 
the thermal system the voltage represents the tempera-
ture and the current the heat flow rate. In the pneumatic 
system the pressure is the analogy to the voltage and the 
volume flow rate is the analogy to the current. The be-
haviour of the valves, of the gas and also of the mem-
brane is nonlinear and so tables or controlled sources are 
needed to include their behaviour into the model.  

For analytical models with a certain complexity usually 
some simplifications have to be done. On the other hand 
that type of model satisfies the requirements for an opti-
mization: the models are parameterizable and the simula-
tion is considerable fast. We used this rough model for 
our first runs. 

First Optimization 

Our first optimization application of SIMOT was to opti-
mize the form of the heating impulses. This aspect reflects 
more the system design rather than the design of the 
pump itself. We choose this task because evaluations of 
the simulation model could be done much more easily if 
only one pump is required and the control parameters of 
the heating device are varied.   
The heating impulse depends on five parameters: the 
magnitude, the rise time, the fall time, the width of the 
pulse, and the period (see Fig. 6). After the completion of 
a simulation the results are prepared so that the following 
six values are derived from the obtained waves: the rate 
of fluid flow, the pressure over both valves, the maximum 

of the temperature of the heating coil, the electrical power 
and the efficiency.  

Fig. 7 shows the result of first optimization runs. Origi-
nally the micropump was actuated with a short heating 
impulse with high magnitude (see Fig. 7a). Our optimiza-
tion had shown that an improved form of the heating 
impulse is  like the following: medium magnitude, long rise 
time and long fall time, but a short width of the pulse 
itself (Fig. 7b). With this power supply the flow rate is 
significantly greater and the pump will get less hot.  

 

 

 

Fig. 5: Electrical Analog Model of the Micropump  

Fig. 6: Pulse modulated power supply 
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Fig. 7: Original heating puls (a) and improved (b) 
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The optimization of the entire design of the micropump is 
a very complex problem, so that it is not sufficient to find 
the solution with trial and error. Although our first opti-
mization considers only five control parameters of the 
power supply the search space has already a magnitude 
of about 1022, it is multimodal and due to its restrictions 
discontinuous. Furthermore other parameters are also of 
great interest for the optimization, so the geometric pa-
rameters and also some properties of the materials. If 
these parameters are taken into account additionally the 
complexity grows very rapidly. This recommends the 
utilization of GLEAM rather than of the already men-
tioned simpler techniques. 

Our first model was a rough model. Building this model 
required simplifications and so it is not accurate enough. 
With an improved model the optimizations should help to 
generate an improved design of the micropump resulting 
in high efficiency and stability. We want to achieve the 
improvement of the model by fitting the values of the 
lump elements with the help of FEM-simulations as de-
scribed in the next section. 

OUTLOOK 

Further work will concentrate on three main topics: Im-
provement of the simulation models together with the 
modelling process itself and improvement of the perform-
ance by parallelization and by extentions to the evolu-
tionary algorithm. 

Adaptive Model Building 

To improve the quality of an analog simulation model, we 
work on an evolutionary model adaptation method, simi-
lar to an off-line parameter estimation [16], which is usu-
ally used for the calculation of unknown model parameter 
values. The standard off-line parameter estimation 
method is based on the variation of unknown parameter 
values of an analog simulation model until the desired 
coincidence of the model behaviour with a behaviour 
reference, for example a measuring series of a real system, 
is obtained.  

Using this procedure we want to improve analog simula-
tion models with support of Finite Element Method 
(FEM) analysis [17]. Especially in system components 
with a complex geometry like a micro valve in which the 
fluid resistance can not be determined analytically with 
the necessary precision, the FEM can be used success-
fully for the determination of such items in an analog 
simulation model. This advantage of our approach is that 
we can obtain now parameterizable analog simulation 
models. This means that also functional dependencies of 
design parameters like geometry or material constants can 
be taken into account, which is an important assumption 
for their application in the area of design optimization. 
The creation of behaviour references with FEM, which 
reflects the behaviour of the system about the complete 
design parameter range, requires a lot of additional com-

puting power. But this has to be done only once and the 
resulting analog simulation model or parts of it can be 
reused later. 

Speed-up by Parallelization 

For practical applications short turn around times (e.g. 
one night run) are necessary. One way to achieve this is 
to utilize the parallel nature of the evolutionary search 
process itself. Earlier investigations [10, 13] using a tran-
sputer cluster have shown that with structured popula-
tions a linear speed up can be achieved. As transputers 
are no longer the hardware platform of first choice and as 
they are less available in industry we now reimplement 
our approach on a network of sun workstations under 
Unix. As our parallel algorithm does not need any central 
control and work asynchronously we can utilize an inho-
mogenous network. This means that we can use up all the 
idle times of a net during the day and the complete net in 
the night or on week end. Because of the absence of 
central control the communication overhead does not 
increase with the number of processors involved. So we 
can spread our software over hundreds of machines if 
available and necessary.  

Speed-up by Improvements to the Method 

Additional to the parallelization of the procedure we want 
to reduce the amount of computational load for one opti-
mization run in general. We want to achieve this without 
lowering the performance or stability of the evolutionary 
search itself. As a simulation run takes more than 99% of 
the computing power of one optimization, another field of 
future work will be efforts to reduce the amount of fitness 
evaluations. Three improvements are under consideration 
and test.  

The first one is simple: We calculate the hamming dis-
tance between the two parents and if this distance is to 
small no recombination will be performed. The second is 
also based on the already calculated hamming distance. 
We can identify spots of (nearly) identical individuals 
within the population. These spots can be regarded as 
stagnating subpopulations which waste comp uting 
power. So we will introduce a reinitialisation operator 
which keeps some of the individuals of the spot. A vari-
ant of this operator identifies the best of the spot and 
adds it to the group of survivors. The disadvantage of 
these two approaches is that they start to work in a more 
or less late phase of an optimization run when the popula-
tion or subpopulations are in the process of conver-
gence.  

The third improvements reflects the fact that a human 
would restrict the search by eliminating parts of the pa-
rameter space which can safely be ignored. In our exam-
ple this can be done for heating impulses with to much 
power because they will surely burn the heater. As we do 
not know a priori, whether the impulse should be like a 
needle or like a brick, we have to allow high magnitudes 



as well as long durations although we know that both, a 
high and long impulse will destroy the pump. So we can 
build a filter which simply calculates the energy of the 
impulse and rejects to high values. But what means „to 
high“? As we do not know this a priori too, one can only 
estimate it and we need an adaptive adjustment. This 
approach works during the complete run and a simple 
version gave us already promising results. A more so-
phisticated variant is now under implementation.  

The first two approaches are of general nature while the 
third one incorporates some domain specific knowledge. 
As it significantly improves the performance especially in 
the early phase of a run, we use it despite of the fact that 
it has to be readjusted or even reimplemented for different 
applications. We are working on a generalized version 
which shall cover a wider range of applications. 

ACKNOWLEDGEMENT  

The authors want to thank Burkhard Büstgens, who 
provided the micropump prototypes and a first SPICE 
model of his pumps.  

REFERENCES 

[1] Blume, C.: GLEAM - A System for „Intuitive Learn-
ing“, Proc. PPSN’90, Springer Verlag, LNCS 496, 1991 

[2] Holland, J.: Adaption in Natural and Artificial Sys-
tems. Univ. of Michigan Press, Ann Arbor, 1975 

[3] Rechenberg, I.: Evolutionsstrategie - Optimierung 
technischer Systeme nach Prinzipien der biologischen 
Evolution (in German). Frommann-Holzboog, Stuttgart, 
1973. 

[4] Fischer-Binder J.-O.: Analog Extensions to VHDL, 
Firma Bosch, 24. Sept. 1993. ftp-Server: nestor.epfl.ch 

[5] Hooke, R., Jeeves, T.A.: Direct Search Solution of 
Numerical and Statistical Problems. J. Assn. Comp. 
Mach., No.8, 1961. 

[6] Nelder, J.A., Mead, R.: A Simplex Method for Func-
tion Minimization. The Comp. Journal, No.7, 1965. 

[7] Jakob, W., Gorges-Schleuter, M., Blume, C.: Applica-
tion of Genetic Algorithms to Task Planning and Learn-
ing. Proc. PPSN’92. North-Holland, Ams terdam, 1992. 

[8] Blume, C., Krisch, S., Jakob, W.: Robot Trajectory 
Planning with Collision Avoidance Using Genetic Algo-
rithms and Simulation. Proceedings of the 25th Interna-
tional Symposium on Industrial Robots (ISIR). Hannover, 
FRG. September 25-27, 1994. 

[9] Blume, C., Gerbe, M.: Deutliche Senkung der Produk-
tionskosten durch Optimierung des Ressourceneinsatzes 
(in German). Automatisierungstechnische Praxis (atp), 
Vol. 36, No. 5, 1994. 

[10] Jakob, W., Blume, C.: Verbesserte Planung und 
Optimierung mit Hilfe eines erweiterten Genetischen 
Algorithmus (in German). Proceedings of Transputer 

Anwender Treffen (TAT’93), Springer Verlag, Heidelberg, 
1994. 

[11] Kirkpatrik, S., Gelatt, C.D., Vechi, M.P.: Optimizati-
on by Simulated Annealing. Science, Vol. 220, No. 4598, 
May, 1983. 

[12] Dueck, G., Scheuer, T.: Threshold Accepting: A 
General Purpose Optimization Algorithm Appearing Su-
perior to Simulated Annealing. Journal of Computational 
Physics, Vol. 90, 1990. 

[13] Gorges-Schleuter, M.: Genetic Algorithms and 
Population Structures - A Massively Parallel Algorithm. 
Doctoral dissertation, Univ. of Dortmund, FRG, 1990. 

[14] Parmee, I. (Editor): Adaptive Computing in Engi-
neering Design and Control - ‘94. Conference Proceed-
ings. University of Plymouth, U.K., 1994. 

[15] Büstgens, B.  et. al.: Micromembrane Pump Manu-
factured by Molding, Proc. Actuator ‘94, Bremen, 1994. 

[16] Young, P.: Recursive Estimation and Time Series 
Analysis, Springer Verlag, 1984. 

[17] Zienkiewicz, O. C.: The Finite Element Method, 
McGraw-Hill Company, London, 1977. 

 


