1,781 research outputs found

    A fast version of the k-means classification algorithm for astronomical applications

    Get PDF
    Context. K-means is a clustering algorithm that has been used to classify large datasets in astronomical databases. It is an unsupervised method, able to cope very different types of problems. Aims. We check whether a variant of the algorithm called single-pass k-means can be used as a fast alternative to the traditional k-means. Methods. The execution time of the two algorithms are compared when classifying subsets drawn from the SDSS-DR7 catalog of galaxy spectra. Results. Single-pass k-means turn out to be between 20 % and 40 % faster than k-means and provide statistically equivalent classifications. This conclusion can be scaled up to other larger databases because the execution time of both algorithms increases linearly with the number of objects. Conclusions. Single-pass k-means can be safely used as a fast alternative to k-means

    First principles study of the adsorption of C60 on Si(111)

    Full text link
    The adsorption of C60 on Si(111) has been studied by means of first-principles density functional calculations. A 2x2 adatom surface reconstruction was used to simulate the terraces of the 7x7 reconstruction. The structure of several possible adsorption configurations was optimized using the ab initio atomic forces, finding good candidates for two different adsorption states observed experimentally. While the C60 molecule remains closely spherical, the silicon substrate appears quite soft, especially the adatoms, which move substantially to form extra C-Si bonds, at the expense of breaking Si-Si bonds. The structural relaxation has a much larger effect on the adsorption energies, which strongly depend on the adsorption configuration, than on the charge transfer.Comment: 4 pages with 3 postscript figures, to appear in Surf. Science. (proceedings of the European Conference on Surface Science ECOSS-19, Sept 2000

    Astronomy & Astrophysics A fast version of the k -means classification algorithm for astronomical applications (Research Note)

    Get PDF
    ABSTRACT Context. K-means is a clustering algorithm that has been used to classify large datasets in astronomical databases. It is an unsupervised method, able to cope very different types of problems. Aims. We check whether a variant of the algorithm called single pass k-means can be used as a fast alternative to the traditional k-means. Methods. The execution time of the two algorithms are compared when classifying subsets drawn from the SDSS-DR7 catalog of galaxy spectra. Results. Single-pass k-means turn out to be between 20% and 40% faster than k-means and provide statistically equivalent classifications. This conclusion can be scaled up to other larger databases because the execution time of both algorithms increases linearly with the number of objects. Conclusions. Single-pass k-means can be safely used as a fast alternative to k-means

    Defining the role of neutrophil-to-lymphocyte ratio in COPD: a systematic literature review

    Get PDF
    COPD is characterized by a pulmonary and systemic inflammatory process. Several authors have reported the elevation of multiple inflammatory markers in patients with COPD; however, their use in routine clinical practice has limitations. The neutrophil-to-lymphocyte ratio (NLR) is a useful and cost-effective inflammatory marker derived from routine complete blood count. We performed a systematic literature review using the PRISMA statement. Twenty-two articles were included, recruiting 7,601 COPD patients and 784 healthy controls. Compared with controls, COPD patients had significantly higher NLR values. We found a significant correlation between the NLR and clinical/functional parameters (FEV1, mMRC, and BODE index) in COPD patients. Elevation of the NLR is associated with the diagnosis of acute exacerbation of COPD (pooled data propose a cut-off value of 3.34 with a median sensitivity, specificity, and area under the curve of 80%, 86%, and 0.86, respectively). Additionally, increased NLR is also associated with the diagnosis of a bacterial infection in exacerbated patients, with a cut-off value of 7.30, although with a low sensitivity and specificity. The NLR is an independent predictor of in-hospital and late mortality after exacerbation. In conclusion, the NLR could be a useful marker in COPD patients; however, further studies are needed to better identify the clinical value of the NLR

    On the possibility of measuring the Earth's gravitomagnetic force in a new laboratory experiment

    Get PDF
    In this paper we propose, in a preliminary way, a new Earth-based laboratory experiment aimed to the detection of the gravitomagnetic field of the Earth. It consists of the measurement of the difference of the circular frequencies of two rotators moving along identical circular paths, but in opposite directions, on a horizontal friction-free plane in a vacuum chamber placed at South Pole. The accuracy of our knowledge of the Earth's rotation from VLBI and the possibility of measuring the rotators'periods over many revolutions should allow for the feasibility of the proposed experiment.Comment: Latex2e, 8 pages, no figures, no tables, accepted for publication by Classical and Quantum Gravity. Typo corrected in the formula of the error in the difference of the orbital period

    TELEPENSOUTH project: Measurement of the Earth gravitomagnetic field in a terrestrial laboratory

    Full text link
    We will expose a preliminary study on the feasibility of an experiment leading to a direct measurement of the gravitomagnetic field generated by the rotational motion of the Earth. This measurement would be achieved by means of an appropriate coupling of a TELEscope and a Foucault PENdulum in a laboratory on ground, preferably at the SOUTH pole. An experiment of this kind was firstly proposed by Braginski, Polnarev and Thorne, 18 years ago, but it was never re-analyzed.Comment: 7 pages, LaTeX, Springer style files included. Contribution to the Proceedings of the Spanish Relativity Meeting-ERE-2001 (Madrid, September 2001). To appear in the book "Relativistic Astrophysics", Lecture Notes in Physics, Springer Verlag (2002), edited by L. Fernandez-Jambrina, L.M. Gonzalez-Romer

    Viewers change eye-blink rate by predicting narrative content

    Get PDF
    Eye blinks provoke a loss of visual information. However, we are not constantly making conscious decisions about the appropriate moment to blink. The presence or absence of eye blinks also denotes levels of attention. We presented three movies with the exact same narrative but different styles of editing and recorded participants' eye blinks. We found that moments of increased or decreased eye blinks by viewers coincided with the same content in the different movie styles. The moments of increased eye blinks corresponded to those when the actor leaves the scene and when the movie repeats the same action for a while. The moments of decreased eye blinks corresponded to actions where visual information was crucial to proper understanding of the scene presented. According to these results, viewers' attention is more related to narrative content than to the style of editing when watching movies

    Brain symmetry in alpha band when watching cuts in movies

    Get PDF
    Altres ajuts: Junta de Andalucía (PY18-823 i BIO-122)The purpose of this study is to determine if there is asymmetry in the brain activity between both hemispheres while watching cuts in movies. We presented videos with cuts to 36 participants, registered electrical brain activity through electroencephalography (EEG) and analyzed asymmetry in frontal, somatomotor, temporal, parietal and occipital areas. EEG power and alpha (8-13 Hz) asymmetry were analyzed based on 4032 epochs (112 epochs from videos × 36 participants) in each hemisphere. On average, we found negative asymmetry, indicating a greater alpha power in the left hemisphere and a greater activity in the right hemisphere in frontal, temporal and occipital areas. The opposite was found in somatomotor and temporal areas. However, with a high inter-subjects variability, these asymmetries did not seem to be significant. Our results suggest that cuts in audiovisuals do not provoke any specific asymmetrical brain activity in the alpha band in viewers. We conclude that brain asymmetry when decoding audiovisual content may be more related with narrative content than with formal style

    The effect of media professionalization on cognitive neurodynamics during audiovisual cuts

    Get PDF
    Experts apply their experience to the proper development of their routine activities. Their acquired expertise or professionalization is expected to help in the development of those recurring tasks. Media professionals spend their daily work watching narrative contents on screens, so learning how they manage visual perception of those contents could be of interest in an increasingly audiovisual society. Media works require not only the understanding of the storytelling, but also the decoding of the formal rules and presentations. We recorded electroencephalographic (EEG) signals from 36 participants (18 media professionals and 18 non-media professionals) while they were watching audiovisual contents, and compared their eyeblink rate and their brain activity and connectivity. We found that media professionals decreased their blink rate after the cuts, suggesting that they can better manage the loss of visual information that blinks entail by sparing them when new visual information is being presented. Cuts triggered similar activation of basic brain processing in the visual cortex of the two groups, but different processing in medial and frontal cortical areas, where media professionals showed a lower activity. Effective brain connectivity occurred in a more organized way in media professionals-possibly due to a better communication between cortical areas that are coordinated for decoding new visual content after cuts
    corecore